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Preface

This book is an outgrowth of data mining courses at Rensselaer Polytechnic Institute
(RPI) and Universidade Federal de Minas Gerais (UFMG); the RPI course has been
offered every Fall since 1998, whereas the UFMG course has been offered since 2002.
Although there are several good books on data mining and related topics, we felt
that many of them are either too high-level or too advanced. Our goal was to write
an introductory text that focuses on the fundamental algorithms in data mining and
analysis. It lays the mathematical foundations for the core data mining methods,
with key concepts explained when first encountered; the book also tries to build the
intuition behind the formulas to aid understanding.

The main parts of the book include exploratory data analysis, frequent pattern
mining, clustering, and classification. The book lays the basic foundations of these
tasks, and it also covers cutting-edge topics such as kernel methods, high-dimensional
data analysis, and complex graphs and networks. It integrates concepts from related
disciplines such as machine learning and statistics and is also ideal for a course on
data analysis. Most of the prerequisite material is covered in the text, especially on
linear algebra, and probability and statistics.

The book includes many examples to illustrate the main technical concepts. It also
has end-of-chapter exercises, which have been used in class. All of the algorithms in the
book have been implemented by the authors. We suggest that readers use their favorite
data analysis and mining software to work through our examples and to implement the
algorithms we describe in text; we recommend the R software or the Python language
with its NumPy package. The datasets used and other supplementary material such
as project ideas and slides are available online at the book’s companion site and its
mirrors at RPI and UFMG:

e http://dataminingbook.info
e http://www.cs.rpi.edu/~zaki/dataminingbook
e http://www.dcc.ufmg.br/dataminingbook

Having understood the basic principles and algorithms in data mining and data
analysis, readers will be well equipped to develop their own methods or use more
advanced techniques.

vii
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Figure 0.1. Chapter dependencies

Suggested Roadmaps

The chapter dependency graph is shown in Figure 0.1. We suggest some typical
roadmaps for courses and readings based on this book. For an undergraduate-level
course, we suggest the following chapters: 1-3, 8, 10, 12-15, 17-19, and 21-22. For an
undergraduate course without exploratory data analysis, we recommend Chapters 1,
8-15, 17-19, and 21-22. For a graduate course, one possibility is to quickly go over
the material in Part I or to assume it as background reading and to directly cover
Chapters 9-22; the other parts of the book, namely frequent pattern mining (Part IT),
clustering (Part III), and classification (Part IV), can be covered in any order. For
a course on data analysis the chapters covered must include 1-7, 13-14, 15 (Section
2), and 20. Finally, for a course with an emphasis on graphs and kernels we suggest
Chapters 4, 5, 7 (Sections 1-3), 11-12, 13 (Sections 1-2), 16-17, and 20-22.
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Data Mining and Analysis

Data mining is the process of discovering insightful, interesting, and novel patterns,
as well as descriptive, understandable, and predictive models from large-scale data.
We begin this chapter by looking at basic properties of data modeled as a data
matrix. We emphasize the geometric and algebraic views, as well as the probabilistic
interpretation of data. We then discuss the main data mining tasks, which span
exploratory data analysis, frequent pattern mining, clustering, and classification,
laying out the roadmap for the book.

1.1 DATA MATRIX

Data can often be represented or abstracted as an n x d data matrix, with n rows and
d columns, where rows correspond to entities in the dataset, and columns represent
attributes or properties of interest. Each row in the data matrix records the observed
attribute values for a given entity. The n x d data matrix is given as

/ | X; Xo - Xd\
X1 X11 X12 - Xld
D=]%X2 X21 X22 -+ X24
Xn Xnl  Xn2 o Xnd

where x; denotes the ith row, which is a d-tuple given as
X = (Xi1, Xi2, -+ -, Xid)

and X; denotes the jth column, which is an n-tuple given as
X = (X1j,X2j,.,Xpj)

Depending on the application domain, rows may also be referred to as entities,
instances, examples, records, transactions, objects, points, feature-vectors, tuples,
and so on. Likewise, columns may also be called attributes, properties, features,
dimensions, variables, fields, and so on. The number of instances n is referred to

1



2 Data Mining and Analysis

Table 1.1. Extract from the Iris dataset

Sepal Sepal Petal Petal Class
length width length width
X1 Xo X3 Xy Xs
X1 5.9 3.0 4.2 1.5 Iris-versicolor
Xo 6.9 3.1 4.9 1.5 Iris-versicolor
X3 6.6 2.9 4.6 1.3 Iris-versicolor
X4 4.6 3.2 1.4 0.2 Iris-setosa
X5 6.0 2.2 4.0 1.0 Iris-versicolor
Xg 4.7 3.2 1.3 0.2 Iris-setosa
X7 6.5 3.0 5.8 2.2 Iris-virginica
Xg 5.8 2.7 5.1 1.9 Iris-virginica
X149 7.7 3.8 6.7 2.2 Iris-virginica
X150 5.1 3.4 1.5 0.2 Iris-setosa

as the size of the data, whereas the number of attributes d is called the dimensionality
of the data. The analysis of a single attribute is referred to as univariate analysis,
whereas the simultaneous analysis of two attributes is called bivariate analysis and
the simultaneous analysis of more than two attributes is called multivariate analysis.

Example 1.1. Table 1.1 shows an extract of the Iris dataset; the complete data forms
a 150 x 5 data matrix. Each entity is an Iris flower, and the attributes include sepal
length, sepal width, petal length, and petal width in centimeters, and the
type or class of the Iris flower. The first row is given as the 5-tuple

x1 =(5.9,3.0,4.2,1.5, Iris-versicolor)

Not all datasets are in the form of a data matrix. For instance, more complex
datasets can be in the form of sequences (e.g., DNA and protein sequences), text,
time-series, images, audio, video, and so on, which may need special techniques
for analysis. However, in many cases even if the raw data is not a data matrix
it can usually be transformed into that form via feature extraction. For example,
given a database of images, we can create a data matrix in which rows represent
images and columns correspond to image features such as color, texture, and so
on. Sometimes, certain attributes may have special semantics associated with them
requiring special treatment. For instance, temporal or spatial attributes are often
treated differently. It is also worth noting that traditional data analysis assumes that
each entity or instance is independent. However, given the interconnected nature of
the world we live in, this assumption may not always hold. Instances may be connected
to other instances via various kinds of relationships, giving rise to a data graph,
where a node represents an entity and an edge represents the relationship between two
entities.



Attributes 3

1.2 ATTRIBUTES

Attributes may be classified into two main types depending on their domain, that is,
depending on the types of values they take on.

Numeric Attributes

A numeric attribute is one that has a real-valued or integer-valued domain. For
example, Age with domain(Age) = N, where N denotes the set of natural numbers
(non-negative integers), is numeric, and so is petal length in Table 1.1, with
domain(petal length) = R* (the set of all positive real numbers). Numeric attributes
that take on a finite or countably infinite set of values are called discrete, whereas
those that can take on any real value are called continuous. As a special case of discrete,
if an attribute has as its domain the set {0, 1}, it is called a binary attribute. Numeric
attributes can be classified further into two types:

e Interval-scaled: For these kinds of attributes only differences (addition or subtraction)
make sense. For example, attribute temperature measured in °C or °F is interval-scaled.
If it is 20 °C on one day and 10 °C on the following day, it is meaningful to talk about
a temperature drop of 10 °C, but it is not meaningful to say that it is twice as cold as
the previous day.

e Ratio-scaled: Here one can compute both differences as well as ratios between values.
For example, for attribute Age, we can say that someone who is 20 years old is twice as
old as someone who is 10 years old.

Categorical Attributes

A categorical attribute is one that has a set-valued domain composed of a set of
symbols. For example, Sex and Education could be categorical attributes with their
domains given as

domain(Sex) = {M, F}
domain(Education) = {HighSchool, BS, MS, PhD}

Categorical attributes may be of two types:

e Nominal: The attribute values in the domain are unordered, and thus only equality
comparisons are meaningful. That is, we can check only whether the value of the
attribute for two given instances is the same or not. For example, Sex is a nominal
attribute. Also class in Table 1.1 is a nominal attribute with domain(class) =
{iris-setosa, iris-versicolor, iris-virginica}.

e Ordinal: The attribute values are ordered, and thus both equality comparisons (is one
value equal to another?) and inequality comparisons (is one value less than or greater
than another?) are allowed, though it may not be possible to quantify the difference
between values. For example, Education is an ordinal attribute because its domain values
are ordered by increasing educational qualification.
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1.3 DATA: ALGEBRAIC AND GEOMETRIC VIEW

If the d attributes or dimensions in the data matrix D are all numeric, then each row
can be considered as a d-dimensional point:

d
X; = (Xi1, X2, ..., Xiq) €R

or equivalently, each row may be considered as a d-dimensional column vector (all
vectors are assumed to be column vectors by default):

Xil
Xi2 T
d
Xi=1 . =(xi1 Xi2 et Xid) eR

Xid

where T is the matrix transpose operator.

The d-dimensional Cartesian coordinate space is specified via the d unit vectors,
called the standard basis vectors, along each of the axes. The jth standard basis
vector e; is the d-dimensional unit vector whose jth component is 1 and the rest of
the components are 0

ej=(0,....1,...,00"

Any other vector in R? can be written as linear combination of the standard basis
vectors. For example, each of the points x; can be written as the linear combination

d
Xj = Xj1€1 +Xj€2 + -+ Xiglq = E Xij€;
j=1

where the scalar value x;; is the coordinate value along the jth axis or attribute.

Example 1.2. Consider the Iris data in Table 1.1. If we project the entire data
onto the first two attributes, then each row can be considered as a point or
a vector in 2-dimensional space. For example, the projection of the 5-tuple
x1 = (5.9,3.0,4.2,1.5, Iris-versicolor) on the first two attributes is shown in
Figure 1.1a. Figure 1.2 shows the scatterplot of all the n = 150 points in the
2-dimensional space spanned by the first two attributes. Likewise, Figure 1.1b shows
X1 as a point and vector in 3-dimensional space, by projecting the data onto the first
three attributes. The point (5.9, 3.0, 4.2) can be seen as specifying the coefficients in
the linear combination of the standard basis vectors in R3:

1 0 0 5.9
x1 =95.9¢1+3.0e2+4.2e3=5910]+30|1}|+42]0]=13.0

Each numeric column or attribute Oan also ‘De treated” as a4{fzct0r in an
n-dimensional space R":
X1j
X2j

x,,j



Data: Algebraic and Geometric View
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Figure 1.1. Row xj as a point and vector in (a) R? and (b) R3.
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Figure 1.2. Scatterplot: sepal length versus sepal width. The solid circle shows the mean point.

If all attributes are numeric, then the data matrix D is in fact an n x d matrix,

also written as D € R"™? given as

S A
X111 X12 X1d X1
T
X21  X22 X24 — X9 — | |
D= = =1 X; X5
Xnl Xn2 Xnd 7erlr R
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As we can see, we can consider the entire dataset as an n x d matrix, or equivalently
as a set of n row vectors x; € R? or as a set of d column vectors X; € R".

1.3.1 Distance and Angle

Treating data instances and attributes as vectors, and the entire dataset as a matrix,
enables one to apply both geometric and algebraic methods to aid in the data mining
and analysis tasks.

Let a,b € R™ be two m-dimensional vectors given as

al bl

as b2
a= . b =

am bm

Dot Product
The dot product between a and b is defined as the scalar value

by
by
alb= (a1 as -+ a,,,) X
bnl
=aib; +asby +---+a,b,

m
= E aib;
i=1

Length
The Euclidean norm or length of a vector a € R” is defined as

llal]| = ~aT Z\/a%+a§+"'+a,3,=

The unit vector in the direction of a is given as

= ()
u=—=|—]a
llall llall

By definition u has length |Ju|| = 1, and it is also called a normalized vector, which
can be used in lieu of a in some analysis tasks.

The Euclidean norm is a special case of a general class of norms, known as
L,-norm, defined as

l m
lall, = (|a1|f’+ laz|” + -+ |am|f’)’ = (Zw)
i=1

for any p # 0. Thus, the Euclidean norm corresponds to the case when p =2.

1
P
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Distance
From the Euclidean norm we can define the Euclidean distance between a and b, as
follows

§(a,b)=]la—b|l=+v(@a—b)T(a—b)= (1.1)

ﬁ:(ai —b;)?
i—1

Thus, the length of a vector is simply its distance from the zero vector 0, all of whose
elements are 0, that is, ||al]| = |la— 0| = 5(a, 0).

From the general L,-norm we can define the corresponding L ,-distance function,
given as follows

3y(a,b) =lla—Dbl, (1.2)

If p is unspecified, as in Eq. (1.1), it is assumed to be p =2 by default.

Angle
The cosine of the smallest angle between vectors a and b, also called the cosine

Simﬂal“i(y, iS gi\/en as

Thus, the cosine of the angle between a and b is given as the dot product of the unit

a b
vectors Tal and IR

The Cauchy—Schwartz inequality states that for any vectors a and b in R™

|la™bl < Jlall - I[bll
It follows immediately from the Cauchy—Schwartz inequality that
—1<cosf <1

Because the smallest angle 6 € [0°,180°] and because cosf € [—1,1], the cosine
similarity value ranges from +1, corresponding to an angle of 0°, to —1, corresponding
to an angle of 180° (or 7 radians).

Orthogonality

Two vectors a and b are said to be orthogonal if and only if aTh = 0, which in turn
implies that cosf =0, that is, the angle between them is 90° or 5 radians. In this case,
we say that they have no similarity.

Example 1.3 (Distance and Angle). Figure 1.3 shows the two vectors

) r-()

Using Eq. (1.1), the Euclidean distance between them is given as

8(a,b)=vV(B-12+B—-42=v16+1=+/17=4.12
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X2
(1,4)
14 2y
(5,3)
3 . .
21T [
>

'
0 i i i i i X1

0 1 2 3 4 )

Figure 1.3. Distance and angle. Unit vectors are shown in gray.

The distance can also be computed as the magnitude of the vector:

5 1 4
-()-0)- ()
because ||a—b| =42+ (—1)2 = /17 =4.12.

The unit vector in the direction of a is given as

w=gi= 7 ()= 7 () = (630)

The unit vector in the direction of b can be computed similarly:

oo (024
>~ \o.97

These unit vectors are also shown in gray in Figure 1.3.
By Eq. (1.3) the cosine of the angle between a and b is given as

(5 T (1
3 4 17 1
cosf = —

V21 JI2r 2 BAx1T V2

We can get the angle by computing the inverse of the cosine:

0 =cos(1/+/2) = 45°

Let us consider the L,-norm for a with p = 3; we get
lall; = (5% +3%) " = (153)/% = 5.34

The distance between a and b using Eq. (1.2) for the L ,-norm with p =3 is given as

1/3

la—bllz = |4, -DT|, = (4 + (=1)?) " = (63)"/* =3.98
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1.3.2 Mean and Total Variance

Mean
The mean of the data matrix D is the vector obtained as the average of all the

points:

1 n
mean(D) =pu = - Z;Xi
i=

Total Variance
The total variance of the data matrix D is the average squared distance of each point

from the mean:
var(D) = li&x- =2 Z i — ) (1.4)
n i=1 ; n i=1 l .

Simplifying Eq. (1.4) we obtain

n

1
var@) =~ (Ixil* = 27w+ |1

i=1

INES 2 vl S 2
=- E ill©—2 - E i
" (izl 1| nu <n X ) +n|pl )

i=1

1 n
== (Z Ixill” — 2np " +n |Iull2>
n i=1
1 n
== (Z ||x,-||2> — Il
n i=1

The total variance is thus the difference between the average of the squared magnitude
of the data points and the squared magnitude of the mean (average of the points).

Centered Data Matrix
Often we need to center the data matrix by making the mean coincide with the origin
of the data space. The centered data matrix is obtained by subtracting the mean from

all the points:

xI\  /ut xT -t 2T
T T T T T
X5 " Xo — K Zy

Z=D-1-u" = - = = (1.5)
xF 't xI—pt zr

where z; = x; — . represents the centered point corresponding to x;, and 1 € R” is the
n-dimensional vector all of whose elements have value 1. The mean of the centered
data matrix Z is 0 € R, because we have subtracted the mean g from all the points

X;.
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1.3.3 Orthogonal Projection

Often in data mining we need to project a point or vector onto another vector, for
example, to obtain a new point after a change of the basis vectors. Let a,b € R” be two
m-dimensional vectors. An orthogonal decomposition of the vector b in the direction
of another vector a, illustrated in Figure 1.4, is given as

b:b“-i-bj_:p—i-r (16)

where p =b, is parallel to a, and r =b, is perpendicular or orthogonal to a. The vector
p is called the orthogonal projection or simply projection of b on the vector a. Note
that the point p € R™ is the point closest to b on the line passing through a. Thus, the
magnitude of the vector r =b — p gives the perpendicular distance between b and a,
which is often interpreted as the residual or error vector between the points b and p.
We can derive an expression for p by noting that p = ca for some scalar c, as p is
parallel to a. Thus, r=b —p=b — ca. Because p and r are orthogonal, we have

pTr=(ca)T(b—ca)=ca’b—c?aTa=0

which implies that

aTh

C = —

aTa

Therefore, the projection of b on a is given as

aTh

p=bj=ca= (E)d (1.7)

Example 1.4. Restricting the Iris dataset to the first two dimensions, sepal length
and sepal width, the mean point is given as

B <5.843)

3.054
Xy
b

4 4+
5 1 &4\0> a
9 L
1+ Q¢‘O\\
0 i i i i i X1

0 1 2 3 4 )

Figure 1.4. Orthogonal projection.
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which is shown as the black circle in Figure 1.2. The corresponding centered data
is shown in Figure 1.5, and the total variance is var (D) = 0.868 (centering does not
change this value).

Figure 1.5 shows the projection of each point onto the line £, which is the line that
maximizes the separation between the class iris-setosa (squares) from the other
two classes, namely iris-versicolor (circles) and iris-virginica (triangles). The

line ¢ is given as the set of all the points (x1,x2)T satisfying the constraint <il> =
2

—2.15
c( 2‘75) for all scalars ¢ € R.

1.3.4 Linear Independence and Dimensionality

Given the data matrix
D:(Xl Xg et Xn)TZ(Xl X2 Xd)

we are often interested in the linear combinations of the rows (points) or the
columns (attributes). For instance, different linear combinations of the original d
attributes yield new derived attributes, which play a key role in feature extraction
and dimensionality reduction.

Given any set of vectors vi,vs,..., v, in an m-dimensional vector space R™, their
linear combination is given as

Cc1vi+cava+ -+ v

Xs
14 A
15
1.0
A N
0.5 A .
e AT
oA TAMG A
0.0 R e H> X
—-0.5
—-1.0
—20 -15 -10 -05 0.0 0.5 1.0 15 2.0

Figure 1.5. Projecting the centered data onto the line £.
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where ¢; € R are scalar values. The set of all possible linear combinations of the k
vectors is called the span, denoted as span(vy,...,vy), which is itself a vector space
being a subspace of R™. If span(vy,...,vy) = R™ then we say that vi,...,v; is a
spanning set for R™.

Row and Column Space

There are several interesting vector spaces associated with the data matrix D, two
of which are the column space and row space of D. The column space of D, denoted
col(D), is the set of all linear combinations of the d attributes X; € R", that is,

col(D) =span(Xy,Xa,...,Xy)

By definition col(D) is a subspace of R". The row space of D, denoted row(D), is the
set of all linear combinations of the n points x; € R?, that is,

row(D) =span(x1,Xa,...,X,)

By definition row(D) is a subspace of R?. Note also that the row space of D is the
column space of DT:

row(D) = col(DT)

Linear Independence

We say that the vectors vy,...,v; are linearly dependent if at least one vector can be
written as a linear combination of the others. Alternatively, the k vectors are linearly
dependent if there are scalars c1,cs,...,c, at least one of which is not zero, such that

c1vi+covo+ -+ v =0
On the other hand, vi,---, v, are linearly independent if and only if
c1vi+cava+ -+ vy =0 implies c1 =ca=---=¢;, =0

Simply put, a set of vectors is linearly independent if none of them can be written as
a linear combination of the other vectors in the set.

Dimension and Rank

Let S be a subspace of R™. A basis for S is a set of vectors in S, say vi,..., v, that
are linearly independent and they span S, that is, span(vy,...,vi) =S. In fact, a basis
is a minimal spanning set. If the vectors in the basis are pairwise orthogonal, they
are said to form an orthogonal basis for S. If, in addition, they are also normalized
to be unit vectors, then they make up an orthonormal basis for S. For instance, the
standard basis for R™ is an orthonormal basis consisting of the vectors

1 0 0
0 1 0

€1 = . €y = . e, =

0 0 1
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Any two bases for S must have the same number of vectors, and the number of vectors
in a basis for S is called the dimension of S, denoted as dim(S). Because S is a subspace
of R™, we must have dim(S) <m.

It is a remarkable fact that, for any matrix, the dimension of its row and column
space is the same, and this dimension is also called the rank of the matrix. For the data
matrix D € R™“, we have rank(D) < min(n,d), which follows from the fact that the
column space can have dimension at most d, and the row space can have dimension at
most n. Thus, even though the data points are ostensibly in a d dimensional attribute
space (the extrinsic dimensionality), if rank(D) < d, then the data points reside in
a lower dimensional subspace of RY, and in this case rank(D) gives an indication
about the intrinsic dimensionality of the data. In fact, with dimensionality reduction
methods it is often possible to approximate D € R"*¢ with a derived data matrix
D’ € R, which has much lower dimensionality, that is, k <« d. In this case k may
reflect the “true” intrinsic dimensionality of the data.

Example 1.5. The line € in Figure 1.5 is given as £ =span((~215 2.75)" ), with
dim({) = 1. After normalization, we obtain the orthonormal basis for £ as the unit

vector
1 (-215\ _ (-0615
J12.19 \ 2.75)  \ 0.788

1.4 DATA: PROBABILISTIC VIEW

The probabilistic view of the data assumes that each numeric attribute X is a random
variable, defined as a function that assigns a real number to each outcome of an
experiment (i.e., some process of observation or measurement). Formally, X is a
function X: O — R, where O, the domain of X, is the set of all possible outcomes
of the experiment, also called the sample space, and R, the range of X, is the set
of real numbers. If the outcomes are numeric, and represent the observed values of
the random variable, then X: O — O is simply the identity function: X(v) = v for all
v € 0. The distinction between the outcomes and the value of the random variable is
important, as we may want to treat the observed values differently depending on the
context, as seen in Example 1.6.

A random variable X is called a discrete random variable if it takes on only a finite
or countably infinite number of values in its range, whereas X is called a continuous
random variable if it can take on any value in its range.

Example 1.6. Consider the sepal length attribute (X;) for the Iris dataset in
Table 1.1. All n = 150 values of this attribute are shown in Table 1.2, which lie
in the range [4.3,7.9], with centimeters as the unit of measurement. Let us assume
that these constitute the set of all possible outcomes O.

By default, we can consider the attribute X; to be a continuous random variable,
given as the identity function X; (v) = v, because the outcomes (sepal length values)
are all numeric.
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Table 1.2. Iris dataset: sepal length (in centimeters).

59 69 66 46 6.0 47 65 58 6.7 6.7 51 51 57 6.1 49
50 5.0 57 50 72 59 65 57 55 49 50 55 46 72 6.8
54 5.0 57 58 51 56 58 51 63 63 56 61 68 73 56
48 71 57 53 57 57 56 44 63 54 63 69 77 6.1 56
6.1 64 50 51 56 54 58 49 46 52 79 77 6.1 55 46
4.7 44 62 48 60 62 50 64 63 6.7 50 59 67 54 6.3
48 44 64 62 60 74 49 70 55 63 68 61 65 6.7 6.7
48 49 69 45 43 52 50 64 52 58 55 76 63 64 6.3
58 5.0 6.7 60 51 48 57 51 66 64 52 64 7.7 58 49
54 51 60 65 55 72 69 62 65 60 54 55 67 7.7 5.1

On the other hand, if we want to distinguish between Iris flowers with short and
long sepal lengths, with long being, say, a length of 7 cm or more, we can define a
discrete random variable A as follows:

0 ifo<?

AWw) =
2 1 ifo>7

In this case the domain of A is [4.3,7.9], and its range is {0,1}. Thus, A assumes
nonzero probability only at the discrete values 0 and 1.

Probability Mass Function
If X is discrete, the probability mass function of X is defined as

fx)=PX=x) forallx eR

In other words, the function f gives the probability P(X = x) that the random variable
X has the exact value x. The name “probability mass function” intuitively conveys the
fact that the probability is concentrated or massed at only discrete values in the range
of X, and is zero for all other values. f must also obey the basic rules of probability.
That is, f must be non-negative:

f&x)=0
and the sum of all probabilities should add to 1:

Y f=1

Example 1.7 (Bernoulli and Binomial Distribution). In Example 1.6, A was defined
as a discrete random variable representing long sepal length. From the sepal length
data in Table 1.2 we find that only 13 Irises have sepal length of at least 7 cm. We
can thus estimate the probability mass function of A as follows:

13
f=PA=1)=5=0087T=p

and 137
0)=PA=0=—=0913=1-—
f(0) ( ) 150 p


oh140
Zvýraznění


Data: Probabilistic View 15

In this case we say that A has a Bernoulli distribution with parameter p € [0, 1],
which denotes the probability of a success, that is, the probability of picking an Iris
with a long sepal length at random from the set of all points. On the other hand,
1 — p is the probability of a failure, that is, of not picking an Iris with long sepal
length.

Let us consider another discrete random variable B, denoting the number of
Irises with long sepal length in m independent Bernoulli trials with probability of
success p. In this case, B takes on the discrete values [0, m], and its probability mass
function is given by the Binomial distribution

m

f(k)=P(B=k)=(k

) pra—pn

The formula can be understood as follows. There are ('I’:) ways of picking k long sepal
length Irises out of the m trials. For each selection of k long sepal length Irises, the
total probability of the k successes is p*, and the total probability of m — k failures is
(1— p)"*. For example, because p = 0.087 from above, the probability of observing
exactly k =2 Irises with long sepal length in m = 10 trials is given as

<10) 5 &
f@Q)=PB=2)= 5 (0.087)(0.913)° =0.164

Figure 1.6 shows the full probability mass function for different values of k for m = 10.
Because p is quite small, the probability of k successes in so few a trials falls off
rapidly as k increases, becoming practically zero for values of k > 6.

P(B=k)

"

0.3 ¥

0.2 ¥

0.1 ¢

xTQ¢¢¢¢¢¢k
o 1 2 3 4 5 6 7 8 9 10

Figure 1.6. Binomial distribution: probability mass function (m =10, p =0.087).
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Probability Density Function

If X is continuous, its range is the entire set of real numbers R. The prob-
ability of any specific value x is only one out of the infinitely many possi-
ble values in the range of X, which means that P(X = x) = 0 for all x €
R. However, this does not mean that the value x is impossible, because in
that case we would conclude that all values are impossible! What it means is
that the probability mass is spread so thinly over the range of values that it
can be measured only over intervals [a,b] C R, rather than at specific points.
Thus, instead of the probability mass function, we define the probability density
function, which specifies the probability that the variable X takes on values in any
interval [a,b] C R:

P(X €la,b]) =/f(x) dx

As before, the density function f must satisfy the basic laws of probability:
fx)=0, for all x eR

and
/ f(x)dx=1

We can get an intuitive understanding of the density function f by considering
the probability density over a small interval of width 2¢ > 0, centered at x, namely
[x —e,x +e€]:

x+e
P(Xe[x—e,x+e])= / f(x) dx ~ 2¢- f(x)
Fl)~ P(Xe€|x—e€x+e) (18)

2¢

f(x) thus gives the probability density at x, given as the ratio of the probability mass
to the width of the interval, that is, the probability mass per unit distance. Thus, it
is important to note that P(X =x) # f(x).

Even though the probability density function f(x) does not specify the probability
P(X =x), it can be used to obtain the relative probability of one value x; over another
x2 because for a given € > 0, by Eq. (1.8), we have

P(X€lx1—€x1+e€]) 2e- f(x1) ACSY
PXelxa—e,xa+e])  2e-f(x2) f(x2)

(1.9)

Thus, if f(xy) is larger than f(x3), then values of X close to x; are more probable
than values close to x2, and vice versa.
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Example 1.8 (Normal Distribution). Consider again the sepal length values from
the Iris dataset, as shown in Table 1.2. Let us assume that these values follow a
Gaussian or normal density function, given as

f)=

1 —(x —p)?
V2mwo? b 202

There are two parameters of the normal density distribution, namely, @, which
represents the mean value, and o2, which represents the variance of the values (these
parameters are discussed in Chapter 2). Figure 1.7 shows the characteristic “bell”
shape plot of the normal distribution. The parameters, u = 5.84 and o2 = 0.681,
were estimated directly from the data for sepal length in Table 1.2.

1
Whereas f(x = u) = f(5.84) = ———exp{0} = 0.483, we emphasize that
S =p) = f(5.84) — p{0} p
the probability of observing X = p is zero, that is, P(X = u) = 0. Thus, P(X = x)

is not given by f(x), rather, P(X = x) is given as the area under the curve for
an infinitesimally small interval [x — €, x + €| centered at x, with € > 0. Figure 1.7
illustrates this with the shaded region centered at u = 5.84. From Eq. (1.8), we have

P(X=p)~2€- f(u) =2¢-0.483 = 0.967¢

As e > 0, we get P(X =p) — 0. However, based on Eq. (1.9) we can claim that the
probability of observing values close to the mean value u = 5.84 is 2.69 times the
probability of observing values close to x =7, as

f(5.84)  0.483

R 018 = 2.69

Cumulative Distribution Function

For any random variable X, whether discrete or continuous, we can define the
cumulative distribution function (CDF) F : R — [0,1], which gives the probability
of observing a value at most some given value x:

Fx)=PX<x) forall —co<x <00
When X is discrete, F is given as

Fx)=P(X<x)=Y  f()

u<x

and when X is continuous, F is given as
Fx)=PX=x)= /f(u) du

Example 1.9 (Cumulative Distribution Function). Figure 1.8 shows the cumulative
distribution function for the binomial distribution in Figure 1.6. It has the
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f)

05 | nte

04 1+

Figure 1.7. Normal distribution: probability density function (1 =5.84, 02 =0.681).

characteristic step shape (right continuous, non-decreasing), as expected for a
discrete random variable. F(x) has the same value F(k) for all x € [k,k + 1) with
0 <k < m, where m is the number of trials and k is the number of successes. The
closed (filled) and open circles demarcate the corresponding closed and open interval
[,k +1). For instance, F(x) = 0.404 = F(0) for all x € [0, 1).

Figure 1.9 shows the cumulative distribution function for the normal density
function shown in Figure 1.7. As expected, for a continuous random variable, the
CDF is also continuous, and non-decreasing. Because the normal distribution is
symmetric about the mean, we have F(u) = P(X < u) =0.5.

1.4.1 Bivariate Random Variables

Instead of considering each attribute as a random variable, we can also perform
pair-wise analysis by considering a pair of attributes, X; and X, as a bivariate random

variable:
Xy
*= <X2>

X : O — R? is a function that assigns to each outcome in the sample space, a pair
X1
X2
case, if the outcomes are numeric, then the default is to assume X to be the identity
function.

of real numbers, that is, a 2-dimensional vector ( ) € R2. As in the univariate
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Figure 1.8. Cumulative distribution function for the binomial distribution.

)

p (u, F(p)) = (5.84,0.5)

0.1 :
0 l l l w — % % % %
1 2 3 4 5 6 7 8 9 10

Figure 1.9. Cumulative distribution function for the normal distribution.

Joint Probability Mass Function
If X; and X5 are both discrete random variables then X has a joint probability mass
function given as follows:

S&x) = fx1,x2) = P(Xy =x1,X2 =x2) = P(X =X%)
f must satisfy the following two conditions:

for all —00 < x7,x9 <00

DY fGax)=1

X1 X2

f(x) = fx1,x2) >0

Y fe=
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Joint Probability Density Function
If X; and X3 are both continuous random variables then X has a joint probability
density function f given as follows:

P(XGW)://f(X) dx = // f(x1,x2) dx1 dxa
xeW (x1,x2)TeW

where W C R? is some subset of the 2-dimensional space of reals. f must also satisfy
the following two conditions:

fx) = f(x1,x2) >0 for all —o00 < x1,%x9 <00
oo ax= [ [ e dn ax=1
R2 —00 —00

As in the univariate case, the probability mass P(x) = P((xl,xQ)T) =0 for any
particular point x. However, we can use f to compute the probability density at x.
Consider the square region W = ([x1 — €, x1 +€], [x2 —€, x2+€]), that is, a 2-dimensional
window of width 2¢ centered at x = (x1,x2)T. The probability density at x can be
approximated as

PXeW)= P(X € ([x1—€.x1+e€| [x2—e x2 +e]))
X1+€ xo+e
= / / f(x1,x2) dx1 dxs
X]—€ xp—€
~2¢-2¢- f(x1,x2)
which implies that
PXeW)

Jxn,x2) = 20)?

The relative probability of one value (a1, as) versus another (b1, b2) can therefore be
computed via the probability density function:

PXe ([al—e,al +6],[a2—e,ag+e])) N (2€)%- f(a1,az) _ [flai,a2)
P(X e (b1 —€,bi+e|,[ba—€,ba+e])) ~ (2602 f(b1.ba)  f(b1.bo)

Example 1.10 (Bivariate Distributions). Consider the sepal length and sepal
width attributes in the Iris dataset, plotted in Figure 1.2. Let A denote the Bernoulli
random variable corresponding to long sepal length (at least 7 cm), as defined in
Example 1.7.

Define another Bernoulli random variable B corresponding to long sepal width,

A
say, at least 3.5 cm. Let X = (B> be a discrete bivariate random variable; then the
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joint probability mass function of X can be estimated from the data as follows:

16

f(OO)—P(A—OB—O)—l =0.773
U S 150

f0,1)=P(A=0,B=1)= 21 0,140
S S 150

10
1,00=P(A=1,B=0)=-— =0.067
F(@,0)=P( ) =10

3
1L)=P(A=1,B=1)=—=0.020
F@,D=P( )=1e0

Figure 1.10 shows a plot of this probability mass function.
Treating attributes X; and X, in the Iris dataset (see Table 1.1) as continuous

Xy
Assuming that X follows a bivariate normal distribution, its joint probability density
function is given as

. . . N . X4
random variables, we can define a continuous bivariate random variable X = ( .

~ Tyl _
Floin By = e enp | - S CE

21 /TZ] 2

Here u and X are the parameters of the bivariate normal distribution, representing
the 2-dimensional mean vector and covariance matrix, which are discussed in detail
in Chapter 2. Further, |X| denotes the determinant of ¥. The plot of the bivariate
normal density is given in Figure 1.11, with mean

w=(5.843,3.054)T
and covariance matrix

5 _ 0.681 —0.039
~\-0.039  0.187

f)
0.773

0.14

Figure 1.10. Joint probability mass function: X; (long sepal length), X2 (long sepal width).
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Figure 1.11. Bivariate normal density: pu = (5.843,3.054)T (solid circle).

It is important to emphasize that the function f(x) specifies only the probability
density at x, and f(x) # P(X =x). As before, we have P(X =x) =0.

Joint Cumulative Distribution Function
The joint cumulative distribution function for two random variables X; and Xs is
defined as the function F, such that for all values x1, x5 € (—00, 00),

F(x) = F(x1,x2) = P(X; <x1 and X3 <x2) = P(X <x)
Statistical Independence

Two random variables X; and X are said to be (statistically) independent if, for every
W; CR and Wy C R, we have

P(Xl EWl and XQGWQ)ZP(Xl €W1)'P(X2€W2)

Furthermore, if X; and X3 are independent, then the following two conditions are also
satisfied:

F(x) = F(x1,x2) = Fi1(x1) - F2(x2)

J&) = fxr,x2) = fi(x1) - fa(xz)
where F; is the cumulative distribution function, and f; is the probability mass or
density function for random variable X;.

1.4.2 Multivariate Random Variable

A d-dimensional multivariate random variable X = (X1, Xo,...,X,)T, also called a
vector random variable, is defined as a function that assigns a vector of real numbers
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to each outcome in the sample space, that is, X : O — R?. The range of X can be
denoted as a vector x = (x1, X2, ..., xz) L. In case all X; are numeric, then X is by default
assumed to be the identity function. In other words, if all attributes are numeric, we
can treat each outcome in the sample space (i.e., each point in the data matrix) as a
vector random variable. On the other hand, if the attributes are not all numeric, then
X maps the outcomes to numeric vectors in its range.

If all X; are discrete, then X is jointly discrete and its joint probability mass
function f is given as

f&®=PX=x)
f(xl,xz,...,xd)zP(Xl =X1,X2 =x2,...,Xd=.Xd)

If all X; are continuous, then X is jointly continuous and its joint probability density
function is given as

P(XeW):/---/f(x) dx

xeW
P((X17X27...,Xd)T€W): // f(xl,xg,...,xd) d.X1 dxz...dxd
(xl,xz,...,xd)TeVV

for any d-dimensional region W C R,

The laws of probability must be obeyed as usual, that is, f(x) > 0 and sum of f
over all x in the range of X must be 1. The joint cumulative distribution function of
X=X,....X) T is given as

Fx)=PX <x)
F(xy,x2,...,x5) = P(Xy <x1,X2 <x2,..., X5 < xg)

for every point x € R9.
We say that Xi,Xs,...,X,; are independent random variables if and only if, for
every region W; C R, we have
P(X1 EWl and X2 EWQ--- and Xd er)
=P(X1 GWl)-P(XQGWg) ----- P(Xder) (110)
If X4,Xs,...,X, are independent then the following conditions are also satisfied
F(x)=F(x1,...,x5) = F1(x1) - Fa(x2) - ... Fy(xq)
f)=f01,..,x0) = filx) - falx2) ...+ fa(xq) (1.11)

where F; is the cumulative distribution function, and f; is the probability mass or
density function for random variable X;.

1.4.3 Random Sample and Statistics

The probability mass or density function of a random variable X may follow some
known form, or as is often the case in data analysis, it may be unknown. When the
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probability function is not known, it may still be convenient to assume that the values
follow some known distribution, based on the characteristics of the data. However,
even in this case, the parameters of the distribution may still be unknown. Thus, in
general, either the parameters, or the entire distribution, may have to be estimated
from the data.

In statistics, the word population is used to refer to the set or universe of all
entities under study. Usually we are interested in certain characteristics or parameters
of the entire population (e.g., the mean age of all computer science students in the
United States). However, looking at the entire population may not be feasible or
may be too expensive. Instead, we try to make inferences about the population
parameters by drawing a random sample from the population, and by computing
appropriate statistics from the sample that give estimates of the corresponding
population parameters of interest.

Univariate Sample
Given a random variable X, a random sample of size n from X is defined as a set of
n independent and identically distributed (IID) random variables Sy, Ss,...,S,, that
is, all of the S;’s are statistically independent of each other, and follow the same
probability mass or density function as X.

If we treat attribute X as a random variable, then each of the observed values of
X, namely, x; (1 <i <n), are themselves treated as identity random variables, and the
observed data is assumed to be a random sample drawn from X. That is, all x; are
considered to be mutually independent and identically distributed as X. By Eq. (1.11)
their joint probability function is given as

fen, ) =] @)

i=1

where fx is the probability mass or density function for X.

Multivariate Sample

For multivariate parameter estimation, the n data points x; (with 1 <i <n) constitute a
d-dimensional multivariate random sample drawn from the vector random variable X =
(X1,Xg,...,Xy). That is, x; are assumed to be independent and identically distributed,
and thus their joint distribution is given as

f(X17X27"'1Xn):1_[fX(Xi) (112)

i=1

where fx is the probability mass or density function for X.

Estimating the parameters of a multivariate joint probability distribution is
usually difficult and computationally intensive. One simplifying assumption that is
typically made is that the d attributes X;,Xs,..., X, are statistically independent.
However, we do not assume that they are identically distributed, because that is
almost never justified. Under the attribute independence assumption Eq. (1.12) can be
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rewritten as

n n d
feaxa,ox) =[reo =T[5 e
i=1

i=1j=1

Statistic

We can estimate a parameter of the population by defining an appropriate sample
statistic, which is defined as a function of the sample. More precisely, let {S;}/L;
denote the random sample of size m drawn from a (multivariate) random variable
X. A statistic @ is a function 0 : (S1,S2,...,S,,) — R. The statistic is an estimate of
the corresponding population parameter 6. As such, the statistic 6 is itself a random
variable. If we use the value of a statistic to estimate a population parameter, this value
is called a point estimate of the parameter, and the statistic is called an estimator of the
parameter. In Chapter 2 we will study different estimators for population parameters
that reflect the location (or centrality) and dispersion of values.

Example 1.11 (Sample Mean). Consider attribute sepal length (Xj) in the Iris
dataset, whose values are shown in Table 1.2. Assume that the mean value of X;
is not known. Let us assume that the observed values {x;}/_; constitute a random
sample drawn from Xj.

The sample mean is a statistic, defined as the average

Plugging in values from Table 1.2, we obtain

e L (5.946.94 -+ TT 51 = o0 5
H= 15020 T A= 50 T

The value [t = 5.84 is a point estimate for the unknown population parameter w, the
(true) mean value of variable Xj.

1.5 DATA MINING

Data mining comprises the core algorithms that enable one to gain fundamental
insights and knowledge from massive data. It is an interdisciplinary field merging
concepts from allied areas such as database systems, statistics, machine learning,
and pattern recognition. In fact, data mining is part of a larger knowledge discovery
process, which includes pre-processing tasks such as data extraction, data cleaning,
data fusion, data reduction and feature construction, as well as post-processing steps
such as pattern and model interpretation, hypothesis confirmation and generation, and
so on. This knowledge discovery and data mining process tends to be highly iterative
and interactive.

The algebraic, geometric, and probabilistic viewpoints of data play a key role in
data mining. Given a dataset of n points in a d-dimensional space, the fundamental
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analysis and mining tasks covered in this book include exploratory data analysis,
frequent pattern discovery, data clustering, and classification models, which are
described next.

1.5.1 Exploratory Data Analysis

Exploratory data analysis aims to explore the numeric and categorical attributes of
the data individually or jointly to extract key characteristics of the data sample via
statistics that give information about the centrality, dispersion, and so on. Moving
away from the IID assumption among the data points, it is also important to consider
the statistics that deal with the data as a graph, where the nodes denote the points
and weighted edges denote the connections between points. This enables one to extract
important topological attributes that give insights into the structure and models of
networks and graphs. Kernel methods provide a fundamental connection between
the independent pointwise view of data, and the viewpoint that deals with pairwise
similarities between points. Many of the exploratory data analysis and mining tasks
can be cast as kernel problems via the kernel trick, that is, by showing that the
operations involve only dot-products between pairs of points. However, kernel methods
also enable us to perform nonlinear analysis by using familiar linear algebraic and
statistical methods in high-dimensional spaces comprising “nonlinear” dimensions.
They further allow us to mine complex data as long as we have a way to measure
the pairwise similarity between two abstract objects. Given that data mining deals
with massive datasets with thousands of attributes and millions of points, another
goal of exploratory analysis is to reduce the amount of data to be mined. For instance,
feature selection and dimensionality reduction methods are used to select the most
important dimensions, discretization methods can be used to reduce the number of
values of an attribute, data sampling methods can be used to reduce the data size, and
SO on.

Part I of this book begins with basic statistical analysis of univariate and
multivariate numeric data in Chapter 2. We describe measures of central tendency such
as mean, median, and mode, and then we consider measures of dispersion such as range,
variance, and covariance. We emphasize the dual algebraic and probabilistic views,
and highlight the geometric interpretation of the various measures. We especially
focus on the multivariate normal distribution, which is widely used as the default
parametric model for data in both classification and clustering. In Chapter 3 we
show how categorical data can be modeled via the multivariate binomial and the
multinomial distributions. We describe the contingency table analysis approach to
test for dependence between categorical attributes. Next, in Chapter 4 we show how to
analyze graph data in terms of the topological structure, with special focus on various
graph centrality measures such as closeness, betweenness, prestige, PageRank, and so
on. We also study basic topological properties of real-world networks such as the small
world property, which states that real graphs have small average path length between
pairs of nodes, the clustering effect, which indicates local clustering around nodes, and
the scale-free property, which manifests itself in a power-law degree distribution. We
describe models that can explain some of these characteristics of real-world graphs;
these include the Erdos—Rényi random graph model, the Watts—Strogatz model,
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and the Barabédsi-Albert model. Kernel methods are then introduced in Chapter 5,
which provide new insights and connections between linear, nonlinear, graph, and
complex data mining tasks. We briefly highlight the theory behind kernel functions,
with the key concept being that a positive semidefinite kernel corresponds to a dot
product in some high-dimensional feature space, and thus we can use familiar numeric
analysis methods for nonlinear or complex object analysis provided we can compute
the pairwise kernel matrix of similarities between object instances. We describe
various kernels for numeric or vector data, as well as sequence and graph data. In
Chapter 6 we consider the peculiarities of high-dimensional space, colorfully referred
to as the curse of dimensionality. In particular, we study the scattering effect, that
is, the fact that data points lie along the surface and corners in high dimensions,
with the “center” of the space being virtually empty. We show the proliferation of
orthogonal axes and also the behavior of the multivariate normal distribution in
high dimensions. Finally, in Chapter 7 we describe the widely used dimensionality
reduction methods such as principal component analysis (PCA) and singular value
decomposition (SVD). PCA finds the optimal k-dimensional subspace that captures
most of the variance in the data. We also show how kernel PCA can be used to find
nonlinear directions that capture the most variance. We conclude with the powerful
SVD spectral decomposition method, studying its geometry, and its relationship
to PCA.

1.5.2 Frequent Pattern Mining

Frequent pattern mining refers to the task of extracting informative and useful patterns
in massive and complex datasets. Patterns comprise sets of co-occurring attribute
values, called itemsets, or more complex patterns, such as sequences, which consider
explicit precedence relationships (either positional or temporal), and graphs, which
consider arbitrary relationships between points. The key goal is to discover hidden
trends and behaviors in the data to understand better the interactions among the
points and attributes.

Part II begins by presenting efficient algorithms for frequent itemset mining in
Chapter 8. The key methods include the level-wise Apriori algorithm, the “vertical”
intersection based Eclat algorithm, and the frequent pattern tree and projection
based FPGrowth method. Typically the mining process results in too many frequent
patterns that can be hard to interpret. In Chapter 9 we consider approaches to
summarize the mined patterns; these include maximal (GenMax algorithm), closed
(Charm algorithm), and non-derivable itemsets. We describe effective methods for
frequent sequence mining in Chapter 10, which include the level-wise GSP method, the
vertical SPADE algorithm, and the projection-based PrefixSpan approach. We also
describe how consecutive subsequences, also called substrings, can be mined much
more efficiently via Ukkonen’s linear time and space suffix tree method. Moving
beyond sequences to arbitrary graphs, we describe the popular and efficient gSpan
algorithm for frequent subgraph mining in Chapter 11. Graph mining involves two
key steps, namely graph isomorphism checks to eliminate duplicate patterns during
pattern enumeration and subgraph isomorphism checks during frequency computation.
These operations can be performed in polynomial time for sets and sequences, but
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for graphs it is known that subgraph isomorphism is NP-hard, and thus there is
no polynomial time method possible unless P = NP. The gSpan method proposes a
new canonical code and a systematic approach to subgraph extension, which allow it
to efficiently detect duplicates and to perform several subgraph isomorphism checks
much more efficiently than performing them individually. Given that pattern mining
methods generate many output results it is very important to assess the mined
patterns. We discuss strategies for assessing both the frequent patterns and rules
that can be mined from them in Chapter 12, emphasizing methods for significance
testing.

1.5.3 Clustering

Clustering is the task of partitioning the points into natural groups called clusters,
such that points within a group are very similar, whereas points across clusters are as
dissimilar as possible. Depending on the data and desired cluster characteristics, there
are different types of clustering paradigms such as representative-based, hierarchical,
density-based, graph-based, and spectral clustering.

Part III starts with representative-based clustering methods (Chapter 13), which
include the K-means and Expectation-Maximization (EM) algorithms. K-means is a
greedy algorithm that minimizes the squared error of points from their respective
cluster means, and it performs hard clustering, that is, each point is assigned to only
one cluster. We also show how kernel K-means can be used for nonlinear clusters. EM
generalizes K-means by modeling the data as a mixture of normal distributions, and
it finds the cluster parameters (the mean and covariance matrix) by maximizing the
likelihood of the data. It is a soft clustering approach, that is, instead of making a
hard assignment, it returns the probability that a point belongs to each cluster. In
Chapter 14 we consider various agglomerative hierarchical clustering methods, which
start from each point in its own cluster, and successively merge (or agglomerate) pairs
of clusters until the desired number of clusters have been found. We consider various
cluster proximity measures that distinguish the different hierarchical methods. There
are some datasets where the points from different clusters may in fact be closer in
distance than points from the same cluster; this usually happens when the clusters
are nonconvex in shape. Density-based clustering methods described in Chapter 15
use the density or connectedness properties to find such nonconvex clusters. The
two main methods are DBSCAN and its generalization DENCLUE, which is based
on kernel density estimation. We consider graph clustering methods in Chapter 16,
which are typically based on spectral analysis of graph data. Graph clustering can
be considered as an optimization problem over a k-way cut in a graph; different
objectives can be cast as spectral decomposition of different graph matrices, such
as the (normalized) adjacency matrix, Laplacian matrix, and so on, derived from
the original graph data or from the kernel matrix. Finally, given the proliferation of
different types of clustering methods, it is important to assess the mined clusters as
to how good they are in capturing the natural groups in data. In Chapter 17, we
describe various clustering validation and evaluation strategies, spanning external and
internal measures to compare a clustering with the ground-truth if it is available, or
to compare two clusterings. We also highlight methods for clustering stability, that is,
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the sensitivity of the clustering to data perturbation, and clustering tendency, that is,
the clusterability of the data. We also consider methods to choose the parameter k,
which is the user-specified value for the number of clusters to discover.

1.5.4 Classification

The classification task is to predict the label or class for a given unlabeled point.
Formally, a classifier is a model or function M that predicts the class label y for
a given input example x, that is, y = M(x), where y € {c1,¢2,...,c} and each ¢; is
a class label (a categorical attribute value). To build the model we require a set of
points with their correct class labels, which is called a training set. After learning the
model M, we can automatically predict the class for any new point. Many different
types of classification models have been proposed such as decision trees, probabilistic
classifiers, support vector machines, and so on.

Part IV starts with the powerful Bayes classifier, which is an example of the
probabilistic classification approach (Chapter 18). It uses the Bayes theorem to predict
the class as the one that maximizes the posterior probability P(c;|x). The main task is
to estimate the joint probability density function f(x) for each class, which is modeled
via a multivariate normal distribution. One limitation of the Bayes approach is the
number of parameters to be estimated which scales as O(d?). The naive Bayes classifier
makes the simplifying assumption that all attributes are independent, which requires
the estimation of only O(d) parameters. It is, however, surprisingly effective for many
datasets. In Chapter 19 we consider the popular decision tree classifier, one of whose
strengths is that it yields models that are easier to understand compared to other
methods. A decision tree recursively partitions the data space into “pure” regions
that contain data points from only one class, with relatively few exceptions. Next,
in Chapter 20, we consider the task of finding an optimal direction that separates
the points from two classes via linear discriminant analysis. It can be considered as a
dimensionality reduction method that also takes the class labels into account, unlike
PCA, which does not consider the class attribute. We also describe the generalization
of linear to kernel discriminant analysis, which allows us to find nonlinear directions
via the kernel trick. In Chapter 21 we describe the support vector machine (SVM)
approach in detail, which is one of the most effective classifiers for many different
problem domains. The goal of SVMs is to find the optimal hyperplane that maximizes
the margin between the classes. Via the kernel trick, SVMs can be used to find
nonlinear boundaries, which nevertheless correspond to some linear hyperplane in
some high-dimensional “nonlinear” space. One of the important tasks in classification
is to assess how good the models are. We conclude this part with Chapter 22, which
presents the various methodologies for assessing classification models. We define
various classification performance measures including ROC analysis. We then describe
the bootstrap and cross-validation approaches for classifier evaluation. Finally, we
discuss the bias—variance tradeoff in classification, and how ensemble classifiers can
help improve the variance or the bias of a classifier.



30 Data Mining and Analysis

1.6 FURTHER READING
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1.7 EXERCISES

Q1. Show that the mean of the centered data matrix Z in (1.5) is 0.

Q2. Prove that for the L-distance in Eq. (1.2), we have
oo ,y) = Tim 8, (x,y) = miax [x; — yil}
p—>00 P i=1

for x,y e R?.
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Numeric Attributes

In this chapter, we discuss basic statistical methods for exploratory data analysis of
numeric attributes. We look at measures of central tendency or location, measures of
dispersion, and measures of linear dependence or association between attributes. We
emphasize the connection between the probabilistic and the geometric and algebraic
views of the data matrix.

2.1 UNIVARIATE ANALYSIS

Univariate analysis focuses on a single attribute at a time; thus the data matrix D can
be thought of as an n x 1 matrix, or simply a column vector, given as

where X is the numeric attribute of interest, with x; € R. X is assumed to be a random
variable, with each point x; (1 <i <n) itself treated as an identity random variable.
We assume that the observed data is a random sample drawn from X, that is, each
variable x; is independent and identically distributed as X. In the vector view, we treat
the sample as an n-dimensional vector, and write X € R”.

In general, the probability density or mass function f(x) and the cumulative
distribution function F(x), for attribute X, are both unknown. However, we can
estimate these distributions directly from the data sample, which also allow us to
compute statistics to estimate several important population parameters.

Empirical Cumulative Distribution Function
The empirical cumulative distribution function (CDF) of X is given as

Fw=> Y16 <0 (2.1)
i=1
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where

1 ifx; <x

0 ifx;>x

I(xi <x)= {

is a binary indicator variable that indicates whether the given condition is satisfied
or not. Intuitively, to obtain the empirical CDF we compute, for each value x € R,
how many points in the sample are less than or equal to x. The empirical CDF puts
a probability mass of % at each point x;. Note that we use the notation F to denote
the fact that the empirical CDF is an estimate for the unknown population CDF F.

Inverse Cumulative Distribution Function
Define the inverse cumulative distribution function or quantile function for a random
variable X as follows:

F Y ¢)=min{x | F(x)>¢q}  for ¢ €[0,1] (2.2)

That is, the inverse CDF gives the least value of X, for which ¢ fraction of the values
are higher, and 1—g fraction of the values are lower. The empirical inverse cumulative
distribution function F~! can be obtained from Eq. (2.1).

Empirical Probability Mass Function
The empirical probability mass function (PMF) of X is given as

N 1<
foy=PX=x)=—3 Txi=x (2:3)
i=1

where
1 ifx;=x

I(x; =x) =
( ) 0 ifx;#x

The empirical PMF also puts a probability mass of % at each point x;.

2.1.1 Measures of Central Tendency

These measures given an indication about the concentration of the probability mass,
the “middle” values, and so on.

Mean
The mean, also called the expected value, of a random variable X is the arithmetic
average of the values of X. It provides a one-number summary of the location or central
tendency for the distribution of X.

The mean or expected value of a discrete random variable X is defined as

p=E[X]=) xf(x) (2.4)

where f(x) is the probability mass function of X.
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The expected value of a continuous random variable X is defined as

oo

uw=E[X]= /xf(x)dx

—0o0

where f(x) is the probability density function of X.

Sample Mean The sample mean is a statistic, that is, a function [ : {x1,x2,...,x,} =
R, defined as the average value of x;’s:

A=Y (2.5)

It serves as an estimator for the unknown mean value u of X. It can be derived by
plugging in the empirical PMF f(x) in Eq. (2.4):

R » 1 ¢ 1 ¢
M:;xf(x)zgx (; ;I(xizx)) = ;xi

Sample Mean Is Unbiased An estimator 6 is called an unbiased estimator for
parameter 0 if E[f] =0 for every possible value of 6. The sample mean [ is an unbiased
estimator for the population mean u, as

EW:EB Z} TR S (2.6

where we use the fact that the random variables x; are IID according to X, which
implies that they have the same mean p as X, that is, E[x;] = u for all x;. We also used
the fact that the expectation function E is a linear operator, that is, for any two random
variables X and Y, and real numbers a and b, we have E[aX + DY] = aE[X] + bE[Y].

Robustness We say that a statistic is robust if it is not affected by extreme values
(such as outliers) in the data. The sample mean is unfortunately not robust because
a single large value (an outlier) can skew the average. A more robust measure is the
trimmed mean obtained after discarding a small fraction of extreme values on one or
both ends. Furthermore, the mean can be somewhat misleading in that it is typically
not a value that occurs in the sample, and it may not even be a value that the
random variable can actually assume (for a discrete random variable). For example,
the number of cars per capita is an integer-valued random variable, but according to
the US Bureau of Transportation Studies, the average number of passenger cars in
the United States was 0.45 in 2008 (137.1 million cars, with a population size of 304.4
million). Obviously, one cannot own 0.45 cars; it can be interpreted as saying that on
average there are 45 cars per 100 people.

Median
The median of a random variable is defined as the value m such that

1 1
P(Xfm)2§ and P(XZm)Z§
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In other words, the median m is the “middle-most” value; half of the values of X are
less and half of the values of X are more than m. In terms of the (inverse) cumulative
distribution function, the median is therefore the value m for which

F(m)=0.5 or m = F~(0.5)

The sample median can be obtained from the empirical CDF [Eq. (2.1)] or the
empirical inverse CDF [Eq. (2.2)] by computing

F@m)=0.5 or m= F(0.5)

A simpler approach to compute the sample median is to first sort all the values x;
(i € [1,n]) in increasing order. If n is odd, the median is the value at position 2. If
n is even, the values at positions 5 and 5+ 1 are both medians.

Unlike the mean, median is robust, as it is not affected very much by extreme
values. Also, it is a value that occurs in the sample and a value the random variable
can actually assume.

Mode
The mode of a random variable X is the value at which the probability mass function
or the probability density function attains its maximum value, depending on whether
X is discrete or continuous, respectively.

The sample mode is a value for which the empirical probability mass function
[Eq. (2.3)] attains its maximum, given as

mode(X) = argmax f(x)

The mode may not be a very useful measure of central tendency for a sample
because by chance an unrepresentative element may be the most frequent element.
Furthermore, if all values in the sample are distinct, each of them will be the mode.

Example 2.1 (Sample Mean, Median, and Mode). Consider the attribute sepal
length (X;) in the Iris dataset, whose values are shown in Table 1.2. The sample
mean is given as follows:

1 876.5
i=—(059469+---+7.7+51)= —— =5.843
% 150( +6.94---+7.7+5.1) 150

Figure 2.1 shows all 150 values of sepal length, and the sample mean. Figure 2.2a
shows the empirical CDF and Figure 2.2b shows the empirical inverse CDF for sepal
length.

Because n =150 is even, the sample median is the value at positions 5§ =75 and
5 +1=76 in sorted order. For sepal length both these values are 5.8; thus the
sample median is 5.8. From the inverse CDF in Figure 2.2b, we can see that

F(5.8)=0.5 or 5.8 = F1(0.5)

The sample mode for sepal length is 5, which can be observed from the
frequency of 5 in Figure 2.1. The empirical probability mass at x =5 is

f5)= 10 _ 0067
150
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2.1.2 Measures of Dispersion

The measures of dispersion give an indication about the spread or variation in the
values of a random variable.

Range
The value range or simply range of a random variable X is the difference between the
maximum and minimum values of X, given as

r = max{X} — min{X}

The (value) range of X is a population parameter, not to be confused with the range
of the function X, which is the set of all the values X can assume. Which range is
being used should be clear from the context.

The sample range is a statistic, given as

n
# = max{x;} — min{x;}
i=1 i=1

By definition, range is sensitive to extreme values, and thus is not robust.

Interquartile Range
Quartiles are special values of the quantile function [Eq. (2.2)] that divide the data
into four equal parts. That is, quartiles correspond to the quantile values of 0.25, 0.5,
0.75, and 1.0. The first quartile is the value g1 = F~1(0.25), to the left of which 25%
of the points lie; the second quartile is the same as the median value g = F~1(0.5), to
the left of which 50% of the points lie; the third quartile gz = F~1(0.75) is the value to
the left of which 75% of the points lie; and the fourth quartile is the maximum value
of X, to the left of which 100% of the points lie.

A more robust measure of the dispersion of X is the interquartile range (IQR),
defined as

IQR = g3 —q1 = F(0.75) — F~1(0.25) (2.7)

IQR can also be thought of as a trimmed range, where we discard 25% of the low and
high values of X. Or put differently, it is the range for the middle 50% of the values
of X. IQR is robust by definition.

The sample IQR can be obtained by plugging in the empirical inverse
CDF in Eq. (2.7):

IQR =G5 — g1 = F~1(0.75) — F~1(0.25)
Variance and Standard Deviation

The variance of a random variable X provides a measure of how much the values of X
deviate from the mean or expected value of X. More formally, variance is the expected
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Figure 2.1. Sample mean for sepal length. Multiple occurrences of the same value are shown stacked.
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value of the squared deviation from the mean, defined as
Z(x —w)? f(x) if X is discrete

o?=varX)=E[X-w? =1 « (2.8)
(x —w)? f(x)dx if X is continuous
—00
The standard deviation, o, is defined as the positive square root of the variance, o2.
We can also write the variance as the difference between the expectation of X2
and the square of the expectation of X:

o? =var(X) = E[(X — w)?| = E[X? — 2uX + 1]
= E[X?| - 2uE[X] + u? = B[X®] - 21° + pi*
=E[X?| - E[X])? (2.9)
It is worth noting that variance is in fact the second moment about the mean,

corresponding to r = 2, which is a special case of the rth moment about the mean for
a random variable X, defined as E[(x — u)"].

Sample Variance The sample variance is defined as

o 1S
& —nZ<x, 1) (2.10)

i=1

It is the average squared deviation of the data values x; from the sample mean [, and
can be derived by plugging in the empirical probability function f from Eq. (2.3) into
Eq. (2.8), as

n

6= (= fx) =) (x— 1) (% gl(x,- = x)) = % > i — )’

X X i=1

The sample standard deviation is given as the positive square root of the sample
variance:

The standard score, also called the z-score, of a sample value x; is the number of
standard deviations the value is away from the mean:

i = <

Put differently, the z-score of x; measures the deviation of x; from the mean value /i,
in units of 4.
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Geometric Interpretation of Sample Variance We can treat the data sample for
attribute X as a vector in n-dimensional space, where n is the sample size. That
is, we write X = (x1,x2,...,%,)T € R". Further, let

X1 — i

R X2 — L
Z=X-1-p=

xn_la

denote the mean subtracted attribute vector, where 1 € R” is the n-dimensional vector
all of whose elements have value 1. We can rewrite Eq. (2.10) in terms of the magnitude
of Z, that is, the dot product of Z with itself:

n

o 1 1 1 < .
62=12 ||z||2=;sz=; > i —py? (2.11)
i=1

The sample variance can thus be interpreted as the squared magnitude of the centered
attribute vector, or the dot product of the centered attribute vector with itself,
normalized by the sample size.

Example 2.2. Consider the data sample for sepal length shown in Figure 2.1. We
can see that the sample range is given as

max{x;} —min{x;} =7.9-4.3=3.6

From the inverse CDF for sepal length in Figure 2.2b, we can find the sample
IQR as follows:

G1=F10.25=5.1
Gs=F~1(0.75)=6.4
IQR=Gs—§1 =6.4—5.1=1.3
The sample variance can be computed from the centered data vector via
Eq. (2.11):
&2=%(X—Lﬁ)T(X—l-ﬁ)=102.168/150=0.681

The sample standard deviation is then

6 =+/0.681=0.825

Variance of the Sample Mean Because the sample mean [ is itself a statistic, we
can compute its mean value and variance. The expected value of the sample mean is
simply u, as we saw in Eq. (2.6). To derive an expression for the variance of the sample
mean,we utilize the fact that the random variables x; are all independent, and thus

var (ix,-) = Xn:var(xi)
i=1 i=1
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Further, because all the x;’s are identically distributed as X, they have the same
variance as X, that is,

var(x;) =o? for all i
Combining the above two facts, we get

var (ix,-) =Xn:var(x,-)=2n:02=n02 (2.12)
i=1 i=1 1

i=

Further, note that

E[Zn:xi] =np (2.13)

Using Egs. (2.9), (2.12), and (2.13), the variance of the sample mean [t can be
computed as

2 2
1 n 1 n
W”(ﬂ)zE[(ﬂ—H)z] :E[ﬂz]—M2=E (; ZM) _n_2E |:in:|

2 2
1 n n 1 n
= e E (Zx,-) —E [in] = pe var ( x,-)
i=1 i=1 i=1

_2 (2.14)

In other words, the sample mean j1 varies or deviates from the mean w in proportion to
the population variance o2. However, the deviation can be made smaller by considering
larger sample size n.

Sample Variance Is Biased, but Is Asymptotically Unbiased The sample variance in
Eq. (2.10) is a biased estimator for the true population variance, o2, that is, E[62] # o 2.
To show this we make use of the identity

Y= =n(h— )+ (i — )’ (2.15)

i=1 i=1

Computing the expectation of 62 by using Eq. (2.15) in the first step, we get

1 n 1 n
E[6°|=E [; > - ﬂ)ﬂ —B [; > i - M)Z’} —E[(h—w)? (2.16)
i=1 i=1

Recall that the random variables x; are IID according to X, which means that they
have the same mean u and variance o2 as X. This means that

E[(x; — M)Q] =0?
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Further, from Eq. (2.14) the sample mean { has variance E[(t — u)?| = % Plugging
these into the Eq. (2.16) we get

1 2
E[6%] = - no? - 7
n n

()

is a biased estimator of o2, as its expected value differs from

The sample variance 62

the population variance by a factor of % However, it is asymptotically unbiased,
that is, the bias vanishes as n — oo because

.o on—1 . 1
lim =liml—-=1
n—o00 n n—oo n

Put differently, as the sample size increases, we have

E[6%] — o2 as n— oo

2.2 BIVARIATE ANALYSIS

In bivariate analysis, we consider two attributes at the same time. We are specifically
interested in understanding the association or dependence between them, if any. We
thus restrict our attention to the two numeric attributes of interest, say X; and Xa,
with the data D represented as an n x 2 matrix:

Geometrically, we can think of D in two ways. It can be viewed as n points or vectors
in 2-dimensional space over the attributes X; and X, that is, x; = (x;1,x2)" € R2.
Alternatively, it can be viewed as two points or vectors in an n-dimensional space
comprising the points, that is, each column is a vector in R”, as follows:

T
Xy = (X11, X215, Xn1)

T
Xo = (x12,X22, .-, Xp2)

In the probabilistic view, the column vector X = (X1, X2)7 is considered a bivariate
vector random variable, and the points x; (1 <i <n) are treated as a random sample
drawn from X, that is, x;’s are considered independent and identically distributed as
X.
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Empirical Joint Probability Mass Function
The empirical joint probability mass function for X is given as

f(X):P(X:X):% ;I(Xi =x) (2.17)

A 1 <
fa,x0) =P(Xy =x1,Xo =x9) == Y I(xi1 =21, Xi2 = X2)
o

where x = (x1,x2)" and I is a indicator variable that takes on the value 1 only when
its argument is true:

It = x) = {1 if x;1 =x1 and x;2 = x2

0 otherwise

As in the univariate case, the probability function puts a probability mass of % at each
point in the data sample.

2.2.1 Measures of Location and Dispersion

Mean
The bivariate mean is defined as the expected value of the vector random variable X,

defined as follows:
ol (R)-) e

In other words, the bivariate mean vector is simply the vector of expected values along
each attribute.

The sample mean vector can be obtained from fxl and sz, the empirical
probability mass functions of X; and Xs, respectively, using Eq. (2.5). It can also
be computed from the joint empirical PMF in Eq. (2.17)

fL:ZXf(X):ZX(% ZI(X;ZX))Z%ZX; (2.19)
X X i=1 i=1

Variance
We can compute the variance along each attribute, namely of for X; and o3 for X»
using Eq. (2.8). The total variance [Eq. (1.4)] is given as

var(D) = 012 ~|—O’22
The sample variances 67 and 63 can be estimated using Eq. (2.10), and the sample
total variance is simply 67 +65.
2.2.2 Measures of Association

Covariance
The covariance between two attributes X; and X5 provides a measure of the association
or linear dependence between them, and is defined as

o12 =E[(X1 — 1) Xa — )] (2.20)
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By linearity of expectation, we have

o12 = E[(X1 — u1) (X2 — p2)]
=E[X Xy — Xipg — Xopy + p1 2]
=EB[X1Xs| — u2BE[Xy| — i1 E[Xo] + p1 2
= E[X1Xa| — pip2
=E[X1Xs] - E[X4]E[Xq] (2.21)
Eq. (2.21) can be seen as a generalization of the univariate variance [Eq. (2.9)] to the
bivariate case.

If X; and X5 are independent random variables, then we conclude that their
covariance is zero. This is because if X; and X5 are independent, then we have

E[X;Xo] =E[X;] - E[Xs]
which in turn implies that
012=0

However, the converse is not true. That is, if 015 = 0, one cannot claim that X; and Xy
are independent. All we can say is that there is no linear dependence between them,
but we cannot rule out that there might be a higher order relationship or dependence
between the two attributes.

The sample covariance between X; and X5 is given as

1 n
A __E:i_A 2 — [ 2.22
012_",-=1(XI 1) (xi2 — [2) ( )

It can be derived by substituting the empirical joint probability mass function f (x1,x2)
from Eq. (2.17) into Eq. (2.20), as follows:

612 =E[(X1 — 1) (X2 — 12)]

= ) @)~ i) f(x)

x=(x1,x2)T
1 n
== D D =) (e =) T = 1,0 = 1)

x=(x1,x)T i=1

1« R X
==Y (xi1 — 1) (xi2 — L)
i=1

n-

Notice that sample covariance is a generalization of the sample variance
[Eq. (2.10)] because

n n

. 1 1 2 _ a2
Gu=— 3 (=)0 —p) =~ Y (i — )’ =6

i=1 i=1

and similarly, o2 = 63.
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Correlation

The correlation between variables X; and X5 is the standardized covariance, obtained

by normalizing the covariance with the standard deviation of each variable, given as
(2.23)

The sample correlation for attributes X; and X5 is given as
Yo (i — ) (xig — f12) (2.24)

012
0102 /30 (i — A2 20T (2 — f12)?

A

Geometric Interpretation of Sample Covariance and Correlation
Let Z; and Z> denote the centered attribute vectors in R”, given as follows
X11— fi1 X12 — fi2

. X21 — U1 R X2 — [la
71 =X1—-1-j11= Zo=Xo—1-jiz=
Xnl — /11 Xn2 — ll2

The sample covariance [Eq. (2.22)] can then be written as
AYA

A

012 =

In other words, the covariance between the two attributes is simply the dot product
between the two centered attribute vectors, normalized by the sample size. The above
can be seen as a generalization of the univariate sample variance given in Eq. (2.11).

Xn
Figure 2.3. Geometric interpretation of covariance and correlation. The two centered attribute vectors

are shown in the (conceptual) n-dimensional space R" spanned by the n points.
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The sample correlation [Eq. (2.24)] can be written as

717 717 7\ /[ Z
P12 = L2 122 < ! ) ( 2 ):cos@ (2.25)

22y Jaiz, Vel 12~ \TZall) \WZal

Thus, the correlation coefficient is simply the cosine of the angle [Eq. (1.3)] between
the two centered attribute vectors, as illustrated in Figure 2.3.

Covariance Matrix
The variance—covariance information for the two attributes X; and X, can be
summarized in the square 2 x 2 covariance matrix, given as

L =E[X-pX-w"|

X, —

=E|:<X;—Z;) (Xi—p1 Xo —M2):|

_ E[X: —u)Xi —u)]  E[(X) —p1) (X — p2)]
E[(X2 —u2) X1 — )] E[(X2 — p2)(Xg — p2)]

_ <012 612) (2.26)

2
0921 (25

Because o012 = 091, ¥ is a symmetric matrix. The covariance matrix records the
attribute specific variances on the main diagonal, and the covariance information
on the off-diagonal elements.

The total variance of the two attributes is given as the sum of the diagonal elements
of ¥, which is also called the trace of X, given as

var(D) =tr(X) =0} +o0;

We immediately have tr(X) > 0.

The generalized variance of the two attributes also considers the covariance, in
addition to the attribute variances, and is given as the determinant of the covariance
matrix X, denoted as |X| or det(X). The generalized covariance is non-negative,
because

2 2 2 2 2 2 2 2 2\ 2 2
|X| =det(X) = 0705 — 0]y =0705 — p150; 05 = (1 — p13)0; 05

where we used Eq.(2.23), that is, 012 = p120102. Note that |pi2| < 1 implies that
pf2 <1, which in turn implies that det(X) > 0, that is, the determinant is non-negative.
The sample covariance matrix is given as

A2 A
-~ (<5} 012
z = A /\2

012 Oy

The sample covariance matrix ¥ shares the same properties as X, that is, it is
symmetric and |X| > 0, and it can be used to easily obtain the sample total and
generalized variance.
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Figure 2.4. Correlation between sepal length and sepal width.

Example 2.3 (Sample Mean and Covariance). Consider the sepal length and
sepal width attributes for the Iris dataset, plotted in Figure 2.4. There are n =150
points in the d = 2 dimensional attribute space. The sample mean vector is given as

. (5.843
F=13.054

The sample covariance matrix is given as

s 0.681 —0.039
~ \-0.039 0.187

The variance for sepal length is 67 = 0.681, and that for sepal width is 65 =
0.187. The covariance between the two attributes is 612 = —0.039, and the correlation

between them is
—0.039

1= /o6t 0187
Thus, there is a very weak negative correlation between these two attributes, as
evidenced by the best linear fit line in Figure 2.4. Alternatively, we can consider the
attributes sepal length and sepal width as two points in R". The correlation is
then the cosine of the angle between them; we have

=—0.109

P12 = cosf = —0.109, which implies that 8 = cos 1 (—0.109) = 96.26°

The angle is close to 90°, that is, the two attribute vectors are almost orthogonal,
indicating weak correlation. Further, the angle being greater than 90° indicates
negative correlation.
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The sample total variance is given as
tr(X) =0.681+0.187=0.868
and the sample generalized variance is given as

12| = det(Z) = 0.681 - 0.187 — (—0.039)> = 0.126

2.3 MULTIVARIATE ANALYSIS

In multivariate analysis, we consider all the d numeric attributes X;, Xs, ..., X,. The
full data is an n x d matrix, given as

Xl X2 Xd
X11 X12 - Xld
D=]*21 X22 -+ X2
Xnl  Xn2 o Xnd

In the row view, the data can be considered as a set of n points or vectors in the
d-dimensional attribute space

T _md
x; = (X1, X2, ..., Xig) €R

In the column view, the data can be considered as a set of d points or vectors in the
n-dimensional space spanned by the data points

T
ij(xlj,xgj,...,xnj) eR"

In the probabilistic view, the d attributes are modeled as a vector random variable,
X = (X1, Xs,...,Xs)7T, and the points x; are considered to be a random sample drawn
from X, that is, they are independent and identically distributed as X.

Mean
Generalizing Eq. (2.18), the multivariate mean vector is obtained by taking the mean
of each attribute, given as

E[X4] 11
p= E[X] = ED:(2] _ 11.2
E[X4] Ha

Generalizing Eq. (2.19), the sample mean is given as
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Covariance Matrix

Generalizing Eq. (2.26) to d dimensions, the multivariate covariance information is
captured by the d x d (square) symmetric covariance matrix that gives the covariance
for each pair of attributes:

0y 012 -+ Old

2 e
Y = E[(X _ ,L)(X_ ’L)T] — 021 05 024
on oa - Of

The diagonal element o specifies the attribute variance for X;, whereas the

off-diagonal elements o;; = 0j; represent the covariance between attribute pairs X;
and XJ

Covariance Matrix Is Positive Semidefinite
It is worth noting that X is a positive semidefinite matrix, that is,

alXa > 0 for any d-dimensional vector a
To see this, observe that

a'Ya=a'E[X-pm)X—p) |a
=Efa"X—p)X—p)"a]
=E[Y?]

>0

where Y is the random variable Y =a™ (X — p) = Z?ﬂ a;(X; — i), and we use the fact
that the expectation of a squared random variable is non-negative.

Because X is also symmetric, this implies that all the eigenvalues of ¥ are real
and non-negative. In other words the d eigenvalues of ¥ can be arranged from the
largest to the smallest as follows: A1 > A9 > --- >4, > 0. A consequence is that the
determinant of X is non-negative:

d
det(Z)=[[r =0 (2.27)
i=1

Total and Generalized Variance
The total variance is given as the trace of the covariance matrix:

var(D)=tr(X)=of+0i+---+a2 (2.28)

Being a sum of squares, the total variance must be non-negative.

The generalized variance is defined as the determinant of the covariance matrix,
det(X), also denoted as |X|. It gives a single value for the overall multivariate scatter.
From Eq. (2.27) we have det(X) > 0.
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Sample Covariance Matrix
The sample covariance matrix is given as

512 612 -+ O

- A2 “ e 5
L-EX-pX-pT =" 7 72 (2.29)

i1 bup - 62

Instead of computing the sample covariance matrix element-by-element, we can
obtain it via matrix operations. Let Z represent the centered data matrix, given as
the matrix of centered attribute vectors Z; = X; — 1- [1;, where 1 € R":

(I |
Z=D-1-p" =21 Zo - Zu
I |
Alternatively, the centered data matrix can also be written in terms of the centered

points z; = x; — fL:

T_ T T
Xy — MK — z; —
T AT T
AT Xg =R — 73
Z=D-1-p" = -
T ~T . T
Xn_”“ Zn

In matrix notation, the sample covariance matrix can be written as

YAV ARVAY/ R AY

1 7Y7, 737, - 7174
2=—(2"2)=- (2.30)

n n : : .

72Xz, 7Y7, - 7Y7,

The sample covariance matrix is thus given as the pairwise inner or dot products of
the centered attribute vectors, normalized by the sample size.

In terms of the centered points z;, the sample covariance matrix can also be written
as a sum of rank-one matrices obtained as the outer product of each centered point:

> zia! (2.31)
i=1

Example 2.4 (Sample Mean and Covariance Matrix). Let us consider all four
numeric attributes for the Iris dataset, namely sepal length, sepal width, petal
length, and petal width. The multivariate sample mean vector is given as

3=

S|

A= (5843 3.054 3.759 1.199)"

and the sample covariance matrix is given as

0.681 -0.039 1.265 0.513
—-0.039  0.187 -0.320 -0.117
1.265 —0.320  3.092 1.288
0.513 -0.117  1.288  0.579

3=
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The sample total variance is
var(D) = tr(T) = 0.681 + 0.187 + 3.092 + 0.579 = 4.539
and the generalized variance is

det(Z) =1.853 x 1073

Example 2.5 (Inner and Outer Product). To illustrate the inner and outer
product-based computation of the sample covariance matrix, consider the
2-dimensional dataset

The mean vector is as follows:

. () _(15/3\ (5
= <;12> = (8.7/3) = <2.9>

and the centered data matrix is then given as

1 0.8 1 -4 21
Z=D-1-p"=|5 24|—-(1](5 29=| 0 -05
9 55 1 4 26

The inner-product approach [Eq. (2.30)] to compute the sample covariance matrix
gives

-4 -21

~ 1 1/ -4 0 4

Z:—ZTZ=—< ) 0 —05
n 3\—21 —-05 26 Y

_ 132 188 _ (10.67 6.27
“3\18.8 11.42) \ 6.27 3.81

Alternatively, the outer-product approach [Eq. (2.31)] gives

(_‘i)-(—z; —2.1)+<_8.5)~(0 —0.5)+<;6>-(4 2.6)}
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_1[[160 84 N 0.0 0.0 N 16.0 10.4
T 3|\ 84 441 0.0 0.25 10.4 6.76
_ 1320 188\ _ (10.67 6.27
“3\18.8 11.42)  \ 627 381

where the centered points z; are the rows of Z. We can see that both the inner and
outer product approaches yield the same sample covariance matrix.

2.4 DATA NORMALIZATION

When analyzing two or more attributes it is often necessary to normalize the values of
the attributes, especially in those cases where the values are vastly different in scale.

Range Normalization
Let X be an attribute and let x1,x2,...,x, be a random sample drawn from X. In

range normalization each value is scaled by the sample range 7 of X:
i min; {x;}  x; —min;{x;}

i N

r © max; {x;} — min; {x;}

After transformation the new attribute takes on values in the range [0, 1].

Standard Score Normalization
In standard score normalization, also called z-normalization, each value is replaced by
its z-score:

where [i is the sample mean and 62 is the sample variance of X. After transformation,
the new attribute has mean i’ =0, and standard deviation ¢’ = 1.

Example 2.6. Consider the example dataset shown in Table 2.1. The attributes Age
and Income have very different scales, with the latter having much larger values.
Consider the distance between x; and xs:

lx1 —x2ll = [ (2,200)" | = v/22 42002 = +/40004 = 200.01

As we can observe, the contribution of Age is overshadowed by the value of Income.
The sample range for Age is 7 =40 — 12 = 28, with the minimum value 12. After
range normalization, the new attribute is given as

Age’ =(0,0.071,0.214,0.393,0.536,0.571,0.786,0.893, 0.964, 1)

For example, for the point xo = (x21, X22) = (14, 500), the value xo; = 14 is transformed
into
_14-12 2

= < —0.071
2T T TR
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Likewise, the sample range for Income is 2700 — 300 = 2400, with a minimum value
of 300; Income is therefore transformed into

Income’ = (0,0.035,0.123,0.298,0.561,0.649,0.702, 1, 0.386,0.421) "

so that xo0 = 0.035. The distance between x; and xo after range normalization is
given as

[x; =5 [ = /0,0)" — (0.071,0.035)"|| = | (—0.071, —0.035)T|| = 0.079

We can observe that Income no longer skews the distance.
For z-normalization, we first compute the mean and standard deviation of both
attributes:

Age | Income
27.2 | 2680
9.77 | 1726.15

Qb >

Age is transformed into
Age' = (—1.56, —1.35, —0.94, —0.43, —0.02,0.08,0.70,1.0,1.21, 1.31) T

For instance, the value x; = 14, for the point xo = (x21,x22) = (14,500), is
transformed as

,  14-27.2

Xy = —g - =—1.35

Likewise, Income is transformed into
Income’ = (—1.38,—1.26, —0.97, —0.39, 0.48,0.77,0.94,1.92, —0.10,0.01) T

so that xo0 = —1.26. The distance between x; and xo after z-normalization is given
as

[xi —x5| =||(—1.56,-1.38)" — (1.35,—1.26)" || = [ (—0.18, —0.12)" | = 0.216

2.5 NORMAL DISTRIBUTION

The normal distribution is one of the most important probability density functions,
especially because many physically observed variables follow an approximately normal
distribution. Furthermore, the sampling distribution of the mean of any arbitrary
probability distribution follows a normal distribution. The normal distribution also
plays an important role as the parametric distribution of choice in clustering, density
estimation, and classification.
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Table 2.1. Dataset for normalization

X; Age (X4) Income (X5)
X1 12 300
X2 14 500
X3 18 1000
X4 23 2000
X5 27 3500
X6 28 4000
X7 34 4300
Xg 37 6000
Xo 39 2500
X10 40 2700

2.5.1 Univariate Normal Distribution

A random variable X has a normal distribution, with the parameters mean u and
variance o2, if the probability density function of X is given as follows:

1 (x — p)?
f(x|l1~502)= o2 eXP{—W}

The term (x — p)? measures the distance of a value x from the mean u of the

distribution, and thus the probability density decreases exponentially as a function

of the distance from the mean. The maximum value of the density occurs at the mean
_ . _ 1 . . s .

Valge x = i, given zafs f () = T which is inversely proportional to the standard

deviation o of the distribution.

Example 2.7. Figure 2.5 plots the standard normal distribution, which has the
parameters i =0 and o2 = 1. The normal distribution has a characteristic bell shape,
and it is symmetric about the mean. The figure also shows the effect of different
values of standard deviation on the shape of the distribution. A smaller value (e.g.,
o =0.5) results in a more “peaked” distribution that decays faster, whereas a larger
value (e.g., o0 =2) results in a flatter distribution that decays slower. Because the
normal distribution is symmetric, the mean u is also the median, as well as the
mode, of the distribution.

Probability Mass
Given an interval [a,b] the probability mass of the normal distribution within that
interval is given as

b
P(afxfb):/f(x|u,a2) dx

In particular, we are often interested in the probability mass concentrated within k
standard deviations from the mean, that is, for the interval [u — ko, u + ko], which
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Figure 2.5. Normal distribution: u = 0, and different variances.
can be computed as
) ko )
P(/L—ko <x S/L—i-ka) = oz / exp{—%}dx
p—ko
Via a change of variable z = =%, we get an equivalent formulation in terms of the

standard normal distribution:

k
1
P(—kSZSk):\/?/e_%ZZdZ
T
k

The last step follows from the fact that e 3% s symmetric, and thus the integral over
the range [—k, k| is equivalent to 2 times the integral over the range [0, k|. Finally, via
another change of variable t = %, we get

k/vV2
P(—kSZSk)zP(OSISk/\/i)=% / e_tzdtzerf<k/x/§> (2.32)
0

where erf is the Gauss error function, defined as

2 X
erf(x) = ﬁ/e_’zdt
0
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Using Eq. (2.32) we can compute the probability mass within k& standard deviations
of the mean. In particular, for k =1, we have

P(u—o0 <x <p+o)=erf(1/+/2) =0.6827

which means that 68.27% of all points lie within 1 standard deviation from the mean.
For k = 2, we have erf(2/+/2) = 0.9545, and for k = 3 we have erf(3/+/2) = 0.9973.
Thus, almost the entire probability mass (i.e., 99.73%) of a normal distribution is
within +30 from the mean wu.

2.5.2 Multivariate Normal Distribution

Given the d-dimensional vector random variable X = (X1, Xa, ..., Xs)T, we say that X
has a multivariate normal distribution, with the parameters mean g and covariance
matrix X, if its joint multivariate probability density function is given as follows:

x=wTEz! (X—IL)}

1
fEn,X)=——m——=— eXP{ 5

(V2m) JTZ]

where |X] is the determinant of the covariance matrix. As in the univariate case, the
term

(2.33)

=) (i —p) (2.34)

measures the distance, called the Mahalanobis distance, of the point x from the mean
p of the distribution, taking into account all of the variance—covariance information
between the attributes. The Mahalanobis distance is a generalization of Euclidean
distance because if we set ¥ =1, where I is the d x d identity matrix (with diagonal
elements as 1’s and off-diagonal elements as 0’s), we get

= T — ) = I — p)?

The Euclidean distance thus ignores the covariance information between the attributes,
whereas the Mahalanobis distance explicitly takes it into consideration.

The standard multivariate normal distribution has parameters u =0 and X =1.
Figure 2.6a plots the probability density of the standard bivariate (d = 2) normal
distribution, with parameters

0
w=0=(;)

1 0
T=I=
6 )

This corresponds to the case where the two attributes are independent, and both
follow the standard normal distribution. The symmetric nature of the standard normal
distribution can be clearly seen in the contour plot shown in Figure 2.6b. Each level
curve represents the set of points x with a fixed density value f(x).

and
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Figure 2.6. (a) Standard bivariate normal density and (b) its contour plot. Parameters: u = (0,0)7,
Y=1I

Geometry of the Multivariate Normal
Let us consider the geometry of the multivariate normal distribution for an arbitrary
mean p and covariance matrix X. Compared to the standard normal distribution,
we can expect the density contours to be shifted, scaled, and rotated. The shift or
translation comes from the fact that the mean p is not necessarily the origin 0. The
scaling or skewing is a result of the attribute variances, and the rotation is a result of
the covariances.

The shape or geometry of the normal distribution becomes clear by considering
the eigen-decomposition of the covariance matrix. Recall that ¥ is a d x d symmetric
positive semidefinite matrix. The eigenvector equation for X is given as

Zu,- = )»,-u,-

Here ; is an eigenvalue of ¥ and the vector u; € R? is the eigenvector corresponding
to ;. Because X is symmetric and positive semidefinite it has d real and non-negative
eigenvalues, which can be arranged in order from the largest to the smallest as follows:
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A1 > A2 >...Ag > 0. The diagonal matrix A is used to record these eigenvalues:

M 0 o 0
0 Ay -~ 0
A=1 . . )
0 0 - Ay

Further, the eigenvectors are unit vectors (normal) and are mutually orthogonal,
that is, they are orthonormal:
u;Fu,- =1 foralli

ul.Tuj =0 foralliz#j

The eigenvectors can be put together into an orthogonal matrix U, defined as a matrix
with normal and mutually orthogonal columns:

U= u; U9 o Uy

The eigen-decomposition of X can then be expressed compactly as follows:
T =UAU"

This equation can be interpreted geometrically as a change in basis vectors. From the
original d dimensions corresponding to the d attributes X;, we derive d new dimensions
u;. X is the covariance matrix in the original space, whereas A is the covariance matrix
in the new coordinate space. Because A is a diagonal matrix, we can immediately
conclude that after the transformation, each new dimension u; has variance A;, and
further that all covariances are zero. In other words, in the new space, the normal
distribution is axis aligned (has no rotation component), but is skewed in each axis
proportional to the eigenvalue A;, which represents the variance along that dimension
(further details are given in Section 7.2.4).

Total and Generalized Variance
The determinant of the covariance matrix is is given as det(X) = ]_[f.l=1 A;. Thus, the
generalized variance of X is the product of its eigenvectors.

Given the fact that the trace of a square matrix is invariant to similarity
transformation, such as a change of basis, we conclude that the total variance var (D)
for a dataset D is invariant, that is,

d d
var(D) =tr(£) =Y o= A =tr(A)
i=1

i=1

In other words o +---+ 07 = A + -+ + Aq.
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f 5 X

X1

Figure 2.7. Iris: sepal length and sepal width, bivariate normal density and contours.

Example 2.8 (Bivariate Normal Density). Treating attributes sepal length (X;)
and sepal width (X3) in the Iris dataset (see Table 1.1) as continuous random

variables, we can define a continuous bivariate random variable X = <X . Assuming
2

that X follows a bivariate normal distribution, we can estimate its parameters from
the sample. The sample mean is given as

= (5.843,3.054)T
and the sample covariance matrix is given as

5_ 0.681 —0.039
~ \-0.039 0.187

The plot of the bivariate normal density for the two attributes is shown in Figure 2.7.
The figure also shows the contour lines and the data points.
Consider the point xs = (6.9, 3.1)T. We have

L — 6.9\ (5.843\ _ (1.057
27H=\3.1) " \3.054) T \0.046
The Mahalanobis distance between xs and jt is

-1
 owel 0.681 —0.039\ ' (1.057
= =)= (e 0 <—0.039 0.187) \0.046

1.486 0.31\ [/1.057
= (1.057 0-046)<0.31 5.42) <0-046)

=1.701
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whereas the squared Euclidean distance between them is

a2 1.057\
ll(x2 — ) ||* = (1.057 0.046)(0.046 =1.119

The eigenvalues and the corresponding eigenvectors of T are as follows:

A1 =0.684 u = (—0.997,0.078)T
Ao =0.184 uy = (—0.078,—0.997)T

These two eigenvectors define the new axes in which the covariance matrix is given as

0.684 0
A_( 0 0.184)

The angle between the original axes e; = (1,0)™ and u; specifies the rotation angle
for the multivariate normal:

cosf = erlrul =—0.997

0 = cos 1 (—0.997) = 175.5°

Figure 2.7 illustrates the new coordinate axes and the new variances. We can see
that in the original axes, the contours are only slightly rotated by angle 175.5° (or
—4.5°).

2.6 FURTHER READING

There are several good textbooks that cover the topics discussed in this chapter in
more depth; see Evans and Rosenthal (2011) and Wasserman (2004) and Rencher and
Christensen (2012).

Evans, M. and Rosenthal, J. (2011). Probability and Statistics: The Science of
Uncertainty,

Rencher, A. C. and Christensen, W. F. (2012). Methods of Multivariate Analysis,

Wasserman, L. (2004). All of Statistics: A Concise Course in Statistical Inference.
New York: Springer Science+Business Media.

2.7 EXERCISES

Q1. True or False:
(a) Mean is robust against outliers.
(b) Median is robust against outliers.
(c) Standard deviation is robust against outliers.
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Q2.

Q3.

Q4.

Q5.

Q6.

QT.

Q8.

Let X and Y be two random variables, denoting age and weight, respectively. Consider
a random sample of size n = 20 from these two variables

X =(69,74,68,70,72,67, 66,70, 76, 68, 72,79, 74, 67,66, 71, 74,75, 75, 76)
Y = (153, 175, 155, 135, 172, 150, 115, 137, 200, 130, 140, 265, 185, 112, 140,
150, 165, 185, 210, 220)

) Find the mean, median, and mode for X.

) What is the variance for Y?

) Plot the normal distribution for X.

(d) What is the probability of observing an age of 80 or higher?

) Find the 2-dimensional mean ft and the covariance matrix 3 for these two variables.
) What is the correlation between age and weight?

(g) Draw a scatterplot to show the relationship between age and weight.

Show that the identity in Eq. (2.15) holds, that is,

D= w2 =n(—m? + Y — )

i=1 i=1

Prove that if x; are independent random variables, then

var (i:xl) = Xn: var(x;)
i=1 i=1

This fact was used in Eq. (2.12).

Define a measure of deviation called mean absolute deviation for a random variable X

1 n
—E lxi —
n-

i=1

Is this measure robust? Why or why not?

as follows:

Prove that the expected value of a vector random variable X = (X, X2)T is simply the
vector of the expected value of the individual random variables X; and X2 as given in
Eq. (2.18).

Show that the correlation [Eq. (2.23)] between any two random variables X; and Xg
lies in the range [—1,1].

Given the dataset in Table 2.2, compute the covariance matrix and the generalized

variance.

Table 2.2. Dataset for Q8

Xy | X | X3
xi || 17 | 17| 12
xo || 11| 9 | 13
xs || 11| 8 | 19
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Q9. Show that the outer-product in Eq. (2.31) for the sample covariance matrix is equivalent
to Eq. (2.29).

Q10. Assume that we are given two univariate normal distributions, Ny and Np, and let
their mean and standard deviation be as follows: up =4, 0o =1 and ugp =8, 05 = 2.
(a) For each of the following values x; € {5,6,7} find out which is the more likely
normal distribution to have produced it.
(b) Derive an expression for the point for which the probability of having been
produced by both the normals is the same.

Q11. Consider Table 2.3. Assume that both the attributes X and Y are numeric, and the
table represents the entire population. If we know that the correlation between X and
Y is zero, what can you infer about the values of Y7

Table 2.3. Dataset for Q11

X Y
1 a
0 b
1 c
0 a
0 c

Q12. Under what conditions will the covariance matrix ¥ be identical to the correlation
matrix, whose (i, j) entry gives the correlation between attributes X; and X;? What
can you conclude about the two variables?



Categorical Attributes

In this chapter we present methods to analyze categorical attributes. Because
categorical attributes have only symbolic values, many of the arithmetic operations
cannot be performed directly on the symbolic values. However, we can compute the
frequencies of these values and use them to analyze the attributes.

3.1 UNIVARIATE ANALYSIS

We assume that the data consists of values for a single categorical attribute, X. Let
the domain of X consist of m symbolic values dom(X) = {a1,as,...,a,}. The data D is
thus an n x 1 symbolic data matrix given as

where each point x; € dom(X).

3.1.1 Bernoulli Variable

Let us first consider the case when the categorical attribute X has domain {aj,as},
with m = 2. We can model X as a Bernoulli random variable, which takes on two
distinct values, 1 and 0, according to the mapping

1 ifv=a;

X() =
{0 ifv= as
The probability mass function (PMF) of X is given as

P(X:x):f(x):{pl 1fx=1
po ifx=0

63
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where p; and pg are the parameters of the distribution, which must satisfy the
condition

p1t+po=1

Because there is only one free parameter, it is customary to denote p; = p, from
which it follows that po =1— p. The PMF of Bernoulli random variable X can then
be written compactly as

PX=x)=f(x)=p1—p)'™
We can see that P(X=1)=p'(1—p)°’=p and PX=0)=p°1—-p)!l =1—p, as

desired.

Mean and Variance
The expected value of X is given as

pn=EX|=1-p+0-A-p)=p
and the variance of X is given as
o? =var(X) = E[X?] — (E[X])?
=% p+0*-(1-p)—-p’=p—p>=pd-p) (3.1)
Sample Mean and Variance
To estimate the parameters of the Bernoulli variable X, we assume that each symbolic
point has been mapped to its binary value. Thus, the set {x1,x2,...,x,} is assumed to

be a random sample drawn from X (i.e., each x; is IID with X).
The sample mean is given as

=" (3.2)

n
i=1

=

S|

where ny is the number of points with x; =1 in the random sample (equal to the
number of occurrences of symbol ay).

Let ngp = n —ny denote the number of points with x; =0 in the random sample.
The sample variance is given as

O .
6= > i —?
i=1

ni A
=—1-p*+
n

n—nj ~
(—p)?
n

=pL=p?+ A~ pp?

=pA—-p)(1—p+p)

=p(1-p)
The sample variance could also have been obtained directly from Eq.(3.1), by
substituting p for p.
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Example 3.1. Consider the sepal length attribute (X;) for the Iris dataset in
Table 1.1. Let us define an Iris flower as Long if its sepal length is in the range
[7,00], and Short if its sepal length is in the range [—00, 7). Then X; can be treated
as a categorical attribute with domain {Long, Short}. From the observed sample of
size n = 150, we find 13 long Irises. The sample mean of X; is

= p=13/150=0.087
and its variance is

6% =p1—p)=0.087(1 —0.087) = 0.087-0.913 = 0.079

Binomial Distribution: Number of Occurrences

Given the Bernoulli variable X, let {x1,x2,...,x,} denote a random sample of size n
drawn from X. Let N be the random variable denoting the number of occurrences
of the symbol a; (value X = 1) in the sample. N has a binomial distribution,
given as

f(N=ni|n,p)= (:)p’”(l—p)""” (3.3)

In fact, N is the sum of the n independent Bernoulli random variables x; IID with
X, that is, N=13"" | x;. By linearity of expectation, the mean or expected number of
occurrences of symbol a; is given as

un =E[N]=E |:Zx,-:| = ZE[Xi] = ZP =np

Because x; are all independent, the variance of N is given as

01% =var(N) = Zvar(x,-) = Zp(l —p)=np(l—p)

i=1 i=1

Example 3.2. Continuing with Example 3.1, we can use the estimated parameter
p =0.087 to compute the expected number of occurrences N of Long sepal length
Irises via the binomial distribution:

E[N]=np =150-0.087=13

In this case, because p is estimated from the sample via p, it is not surprising
that the expected number of occurrences of long Irises coincides with the actual
occurrences. However, what is more interesting is that we can compute the variance
in the number of occurrences:

var(N) =np(1 — p) = 150-0.079 = 11.9
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As the sample size increases, the binomial distribution given in Eq. 3.3 tends to a
normal distribution with u =13 and o = +/11.9 = 3.45 for our example. Thus, with
confidence greater than 95% we can claim that the number of occurrences of a; will
lie in the range p + 20 =[9.55, 16.45], which follows from the fact that for a normal
distribution 95.45% of the probability mass lies within two standard deviations from
the mean (see Section 2.5.1).

3.1.2 Multivariate Bernoulli Variable

We now consider the general case when X is a categorical attribute with domain
{ai,a2,...,a,}. We can model X as an m-dimensional Bernoulli random variable
X = (A1, As,...,A,)T, where each A; is a Bernoulli variable with parameter p;
denoting the probability of observing symbol @;. However, because X can assume
only one of the symbolic values at any one time, if X =q;, then A; =1, and A; =0 for
all j #i. The range of the random variable X is thus the set {0, 1}, with the further
restriction that if X =a;, then X = ¢;, where ¢; is the ith standard basis vector e¢; € R™

given as
i—1 m—i

—_— —_—— T
e =(0,...,0,1,0,...,0)

In e;, only the ith element is 1 (e; = 1), whereas all other elements are zero

(EUZO,VJ#Z)
This is precisely the definition of a multivariate Bernoulli variable, which is a
generalization of a Bernoulli variable from two outcomes to m outcomes. We thus

model the categorical attribute X as a multivariate Bernoulli variable X defined as
XWw)=¢; ifv=aq;

The range of X consists of m distinct vector values {e1,es,...,e,}, with the PMF of X
given as

PX=e)=fle)=pi

where p; is the probability of observing value a;. These parameters must satisfy the

condition

ZP; =1
i—1

The PMF can be written compactly as follows:
PX=e)=fle)=]]p" (34)
j=1

Because ¢;; =1, and e;; =0 for j #1i, we can see that, as expected, we have

Cij e eji ¢
fley=[Tp" =P x--pf-x piim = pi - pl-- x pp = py
i=1
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Table 3.1. Discretized sepal length attribute

Bins Domain Counts
[4.3,5.2] Very Short (a;) ny =45
(5.2,6.1] Short (az) ns =50
(6.1,7.0] Long (as) ns =43
(7.0,7.9] Very Long (a4) ng=12

Example 3.3. Let us consider the sepal length attribute (X;) for the Iris dataset
shown in Table 1.2. We divide the sepal length into four equal-width intervals, and
give each interval a name as shown in Table 3.1. We consider X; as a categorical
attribute with domain

{a1 =VeryShort, ay = Short, az = Long, as = VeryLong}

We model the categorical attribute X; as a multivariate Bernoulli variable X,
defined as

e1=(1,0,0,0) ifv=a
e2=1(0,1,0,0) ifv=as
e3=1(0,0,1,0) ifv=as
e4=1(0,0,0,1) ifv=ay

X() =

For example, the symbolic point x; = Short = as is represented as the vector
0,1,0,0)T =e,.

Mean
The mean or expected value of X can be obtained as

1 0 P1
m m 0 0 p2
ﬂZE[X]:Zeif(ei)ZZeipi: it Pe=| . | =P (3.5)
i=1 i=1 : : :
0 1 Pm

Sample Mean

Assume that each symbolic point x; € D is mapped to the variable x; = X(x;). The
mapped dataset x1,Xs,...,X, is then assumed to be a random sample IID with X. We
can compute the sample mean by placing a probability mass of % at each point

nl/n ]A)l
L1 " n; na/n P2 .
n=- Xi=Z—lei= . =| . |=Pp (3.6)
i=1 i=1 . .
N /n lam

where n; is the number of occurrences of the vector value e; in the sample, which
is equivalent to the number of occurrences of the symbol a;. Furthermore, we have
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0.3.33
0.3
4 0.287
0.3 ® ®
0.2 +
0.1 + 0.08
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e1 (S5) €3 €4
Very Short Short Long Very Long

Figure 3.1. Probability mass function: sepal length.

> n; =n, which follows from the fact that X can take on only m distinct values e;,
and the counts for each value must add up to the sample size n.

Example 3.4 (Sample Mean). Consider the observed counts n; for each of the values
a; (e;) of the discretized sepal length attribute, shown in Table 3.1. Because the
total sample size is n = 150, from these we can obtain the estimates p; as follows:

P1=45/150=0.3
P2 =50/150 = 0.333
Ps=43/150 = 0.287
Pa=12/150 = 0.08

The PMF for X is plotted in Figure 3.1, and the sample mean for X is given as

Covariance Matrix

0.3
.. fos3s3
B=P=10.987

0.08

Recall that an m-dimensional multivariate Bernoulli variable is simply a vector of
m Bernoulli variables. For instance, X = (A1, Aa, ..., A,)T, where A; is the Bernoulli
variable corresponding to symbol a;. The variance—covariance information between the

constituent Bernoulli variables yields a covariance matrix for X.
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Let us first consider the variance along each Bernoulli variable A;. By Eq. (3.1),
we immediately have

ol =var(A;) = pi(1— p;)

Next consider the covariance between A; and A;. Utilizing the identity in
Eq. (2.21), we have

0ij =E[A;A;] —E[A;]-E[A;] =0—pipj = —pip,

which follows from the fact that E[A;A;] =0, as A; and A; cannot both be 1 at the
same time, and thus their product A;A; = 0. This same fact leads to the negative
relationship between A; and A;. What is interesting is that the degree of negative
association is proportional to the product of the mean values for A; and A;.

From the preceding expressions for variance and covariance, the m x m covariance
matrix for X is given as

of o2 ... Oin pil—p1)  —pip2 - —P1Dm
s_ | o ... O —p1p2 p2(l—p2) -+ —papu
Olm Oom ... O2 —DP1Dm —p2Pm o Pl — pw)

Notice how each row in ¥ sums to zero. For example, for row i, we have
m
—pipr—pip2— -+ pi(l—pi) == pipmn=pi —pinj =pi—pi=0 (3.7)
j=1

Because X is symmetric, it follows that each column also sums to zero.
Define P as the m x m diagonal matrix:

p1 O 0
. . 0 p2 0

P = diag(p) = diag(p1, p2,..., pm) = )
0 0 - pu

We can compactly write the covariance matrix of X as
T=P-p-p’ (3.8)
Sample Covariance Matrix

The sample covariance matrix can be obtained from Eq. (3.8) in a straightforward
manner:

T=P-p-p" (3.9)

where P = diag(p), and p = fi = (p1, D2, ..., Pm)" denotes the empirical probability
mass function for X.
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Example 3.5. Returning to the discretized sepal length attribute in Example 3.4,
we have fi =p = (0.3,0.333,0.287,0.08)T. The sample covariance matrix is given as

T=P-pp"

0.3 0
o 033 o0
1o 0.287

0 0

0.3 0
|0 0333 o0
1o 0.287

0 0

0.21 —0.1
| -01 o0.222
~ | -0.086 —0.096
—0.024 —-0.027

0
0
0
0.08
0
0

0
0.08

—0.086
—0.096

0.204
—0.023

0.3
0.333
0.287

0.08

(0.3 0.333

0.09
0.1
0.086
0.024

0.1
0.111
0.096
0.027

0.086
0.096
0.082
0.023

—0.024
—0.027
—0.023

0.074

One can verify that each row (and column) in ¥ sums to zero.

0.287 0.08)

0.024
0.027
0.023
0.006

It is worth emphasizing that whereas the modeling of categorical attribute X

as a multivariate Bernoulli variable, X = (A1, Ao, .

.., AT, makes the structure of

the mean and covariance matrix explicit, the same results would be obtained if we
simply treat the mapped values X(x;) as a new n x m binary data matrix, and apply
the standard definitions of the mean and covariance matrix from multivariate numeric
attribute analysis (see Section 2.3). In essence, the mapping from symbols a; to binary
vectors e; is the key idea in categorical attribute analysis.

Example 3.6. Consider the sample D of size n =5 for the sepal length attribute
X; in the Iris dataset, shown in Table 3.2a. As in Example 3.1, we assume that
X; has only two categorical values {Long, Short}. We model X; as the multivariate
Bernoulli variable X; defined as

X1(v) =

The sample mean [Eq. (3.6)] is

€1 = (17 O)T
€2 = (07 1)T

if v =Long(a;)
if v = Short(as)

R=Dp=(2/5,3/5T=(0.4,0.6)T

and the sample covariance matrix [Eq. (3.9)] is

T-P

" 0.4
—pp' = <

0

0.4
0

&J_<

&0_<

8:2) (0.4 0.6)

0.16 0.24)

0.24
0.24 0.36 —0.24

—0.24
0.24
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Table 3.2. (a) Categorical dataset. (b) Mapped binary dataset. (¢) Centered dataset.
(a) (b) (©)

X A | As 7y Zo
X1 Short X1 0 1 z1 | =04 0.4
Xo Short Xo 0 1 zo | —0.4 0.4
X3 Long X3 1 0 73 0.6 | —0.6
X4 Short X4 0 1 zqs | —0.4 0.4
X5 Long X5 1 0 75 0.6 [ —0.6

To show that the same result would be obtained via standard numeric analysis,
we map the categorical attribute X to the two Bernoulli attributes A; and As
corresponding to symbols Long and Short, respectively. The mapped dataset is
shown in Table 3.2b. The sample mean is simply

1

5
D xi=2(2.3)"=(04,06)"
i=1

= =

ot =

Next, we center the dataset by subtracting the mean value from each attribute. After
centering, the mapped dataset is as shown in Table 3.2¢, with attribute Z; as the
centered attribute A;. We can compute the covariance matrix using the inner-product
form [Eq. (2.30)] on the centered column vectors. We have

1

ol = gz;le =1.2/5=0.24

1
0} = gz’zfz2 =1.2/5=0.24

1
o12 = ngzz =-1.2/5=-0.24

Thus, the sample covariance matrix is given as
5 _ 0.24 —-0.24
~\-0.24 0.24

which matches the result obtained by using the multivariate Bernoulli modeling
approach.

Multinomial Distribution: Number of Occurrences

Given a multivariate Bernoulli variable X and a random sample {x1,Xa2,...,X,} drawn
from X. Let N; be the random variable corresponding to the number of occurrences
of symbol a; in the sample, and let N = (N;,Ns,...,N,,)T denote the vector random
variable corresponding to the joint distribution of the number of occurrences over all
the symbols. Then N has a multinomial distribution, given as

F(N=(n1,n2,...,n,) Ip)=<n1n2n ; )]_[Pf”
o) 1
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We can see that this is a direct generalization of the binomial distribution in Eq. (3.3).

The term
n n!
ning...n, nilna!...n,!

denotes the number of ways of choosing n; occurrences of each symbol a; from a sample
of size n, with Y ", n; =n.
The mean and covariance matrix of N are given as n times the mean and covariance

matrix of X. That is, the mean of N is given as

npi
px =EIN| =nE[X] =n-p=n-p=| :
npm
and its covariance matrix is given as
np1(1—p1)  —npipa - —nP1 Pm
T —npip2  npa(l—p2) -+ —npapy
Yn=n-P—pp)= ) : ) .
—nP1Pm —np2pm -+ Pl — pu)

Likewise the sample mean and covariance matrix for N are given as

fin = np Ex =n(P-ppT)

3.2 BIVARIATE ANALYSIS

Assume that the data comprises two categorical attributes, X; and X5, with

dom(Xy) ={ai1,a12,...,41m; }

dom(X3) ={az1,as, ..., 612m2}

We are given n categorical points of the form x; = (xi1,x;2)T with x;1 € dom(X;) and
Xxi2 € dom(X3). The dataset is thus an n x 2 symbolic data matrix:

We can model X; and X5 as multivariate Bernoulli variables X; and Xy with
dimensions m; and ms, respectively. The probability mass functions for X; and X,
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are given according to Eq. (3.4):

mi

1

P(Xy=e) = filer) = p! =] [(p1)n
k=1

mo

P(Xo = e2)) = falez)) = p? = [ [(pD)%
k=1

where ey; is the ith standard basis vector in R™ (for attribute X;) whose kth
component is e}, and ey; is the jth standard basis vector in R"2 (for attribute X»)
whose kth component is ej2k. Further, the parameter p! denotes the probability of
observing symbol ay,, and pj2 denotes the probability of observing symbol ag;. Together
they must satisfy the conditions: Y/ p! =1 and ) 72 p? =1.

The joint distribution of X; and X5 is modeled as the d’ = m; + my dimensional

X
vector variable X = (Xl)’ specified by the mapping
2

X1 (v1) el
X((v)") = ( =
(w1, v2)7) Xa(v2) e2;
provided that v; = ay; and vy = ay;. The range of X thus consists of m; x my distinct
pairs of vector values {(el,-,egj)T}, with 1 <i <mj and 1 < j <ms. The joint PMF of
X is given as
M2 2
P(X=(e11.e2))") = fleri e2)) = pij = l—[l—[pi;‘r "
r=1s=1
where p;; the probability of observing the symbol pair (ay;,as;). These probability
parameters must satisfy the condition Y ;') 372, pi; = 1. The joint PMF for X can be
expressed as the my x mo matrix

P11 P12 ... Pimg
P21 P22 ... P2

Po=|". . e (3.10)
Pm11 pm12 oo pm1m2

Example 3.7. Consider the discretized sepal length attribute (X;) in Table 3.1.
We also discretize the sepal width attribute (X3) into three values as shown in
Table 3.3. We thus have

dom(X;) = {a;; =VeryShort,a;2 = Short,a;3 = Long, a14 = VeryLong}

dom(X3) = {as; = Short, azs = Medium, as3 = Long}

The symbolic point x = (Short, Long) = (a;2,as3), is mapped to the vector
X(x) = (e”) —(0,1,0,0]0,0,1)" e R7
€23

where we use | to demarcate the two subvectors e;s = (0,1,0,0)T € R* and
ea3 = (0,0,1)T € R3, corresponding to symbolic attributes sepal length and sepal
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Table 3.3. Discretized sepal width

attribute
Bins Domain Counts
[2.0,2.8] | Short (a1) 47
(2.8,3.6] | Medium (az) 88
(3.6,4.4] | Long (a3) 15

width, respectively. Note that e;s is the second standard basis vector in R* for X,
and es3 is the third standard basis vector in R® for Xos.

Mean
The bivariate mean can easily be generalized from Eq. (3.5), as follows:

X1>:| (E[X1]) (Ml) <p1>
w=EX] [<X2 E[Xo] o P2

where u; =p; = (p%,...,p,}q)T and gy, =pa = (pf,...,p,%,z)T are the mean vectors for
X1 and X5. The vectors p; and p2 also represent the probability mass functions for

X1 and X, respectively.

Sample Mean
The sample mean can also be generalized from Eq. (3.6), by placing a probability mass
of % at each point:

1 A1
n P1
mi 1 : :

n loniey; 1 A1 A N
ﬂ_1§ :XA_E S _ L e | | P _<P1>_(l’~1
- 1 — - 2 - A2 - A - A
n 4 n my 92 n|n P2 )

i=1 2 nies; 1 P1
2 22
nmz pmz

where n; is the observed frequency of symbol a;; in the sample of size n, and ft; =p; =
(P, ph, ..., pi )T is the sample mean vector for X;, which is also the empirical PMF

i

for attribute X;.

Covariance Matrix
The covariance matrix for X is the d’ x d’ = (m1 + ms) x (my + mo) matrix given as

211 Zu)
Y= 3.11
<Z1T2 oo (3.1)
where X1 is the my x my covariance matrix for X, and X oo is the mo X mo covariance
matrix for Xy, which can be computed using Eq. (3.8). That is,

%1 =Py —pip]
Y20 =Py —popy
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where P; = diag(p;) and P2 = diag(ps). Further, X1 is the m x my covariance matrix
between variables X; and Xs, given as

T2 =E[X1 — )Xz — po) "]
=E[X;X]]| - E[X,|E[Xz]"

=Pro—mipy
=Py —pipsy
pui—pipi  pi2—pips Pimy—PiPh,
_| pa—pp? p2-pip3 - pan—pipn,
Pmll—P,}”P% pm12_p,}11p§ pl"1m2_pr}11p1312

where P9 represents the joint PMF for X given in Eq. (3.10).
Incidentally, each row and each column of X5 sums to zero. For example, consider
row [ and column j:

mo mo
S pu -l 2D = (Zm) b= pi =0
k=1 k=1
mi mi
> (i —pir)) = (Zij) —pj=p;—p;=0
k=1 k=1

which follows from the fact that summing the joint mass function over all values of
Xs, yields the marginal distribution of X;, and summing it over all values of X; yields
the marginal distribution for Xs. Note that pj2 is the probability of observing symbol
azj; it should not be confused with the square of p;. Combined with the fact that X
and X2 also have row and column sums equal to zero via Eq. (3.7), the full covariance
matrix ¥ has rows and columns that sum up to zero.

Sample Covariance Matrix
The sample covariance matrix is given as

- (=4 =
z:(JR A12> (3.12)

Y, T

where
X1 =P — DDy
Yoo =Py —Dob,

Here P, = diag(p1) and Py= diag(pz), and p; and ps specify the empirical probability
mass functions for X;, and X5, respectively. Further, P15 specifies the empirical joint
PMF for X; and X3, given as

~ 1 < nij .
P12(l,])=f(€1i,€2j)=;ZL‘/‘(X1¢)=—=Pij (3.13)

i
n
k=1
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where I;; is the indicator variable

1 if X1 = €1 and Xk2 = €2

0 otherwise

Iij(Xk) = !

Taking the sum of I;;(x¢) over all the n points in the sample yields the number
of occurrences, n;;, of the symbol pair (ai;,as;) in the sample. One issue with the
cross-attribute covariance matrix flg is the need to estimate a quadratic number
of parameters. That is, we need to obtain reliable counts n;; to estimate the
parameters p;;, for a total of O(m; x my) parameters that have to be estimated,
which can be a problem if the categorical attributes have many symbols. On the
other hand, estimating fll and 222 requires that we estimate m; and my parameters,
corresponding to p} and pjz, respectively. In total, computing X requires the estimation
of mymo +mq 4+ mo parameters.

Example 3.8. We continue with the bivariate categorical attributes X; and X5 in
Example 3.7. From Example 3.4, and from the occurrence counts for each of the
values of sepal width in Table 3.3, we have

0.3
N 1) R W
Ki=P1= 0.987 ﬂz—p2—150 o = 61
0.08 ’

Thus, the mean for X = (§1

> is given as
2

= (,’21> = (E’l> =(0.3,0.333,0.287,0.08| 0.313,0.587,0.1) T
2 b2

From Example 3.5 we have

0.21 —0.1 —0.086 —0.024

S = —0.1 0.222 —-0.096 -0.027
—0.086 —0.096  0.204 —0.023

—-0.024 -0.027 -0.023 0.074

In a similar manner we can obtain

0.215 —0.184 —0.031
Yoo = —0.184 0.242 —0.059
—0.031 —0.059 0.09

Next, we use the observed counts in Table 3.4 to obtain the empirical joint PMF
for X; and X using Eq. (3.13), as plotted in Figure 3.2. From these probabilities we
get

7 33 5 0.047 0.22 0.033
~ 1 |24 18 8 0.16 0.12 0.053
EX; X =Py = — =
XaX3]= P12 15013 30 0 0.087 0.2 0
3 7 2 0.02 0.047 0.013
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Table 3.4. Observed Counts (njj): sepal length and sepal width

Xs
Short (e21) | Medium (eg2) | Long (e23)
Very Short (ej;) 7 33 5
X Short (eas) 24 18 8
! Long (e13) 13 30 0
Very Long (eiq) 3 7 2
f(x)
0.2Y
.22
[
N
0.16 0.1

Figure 3.2. Empirical joint probability mass function: sepal length and sepal width.

Further, we have

E[Xi|E[X|T = fiy g = pipa

0.3
0.333
0.287

0.08

0.094 0.176
0.104 0.196
0.09 0.168
0.025 0.047

(0.313 0.587 0.1)

0.03
0.033
0.029
0.008
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We can now compute the across-attribute sample covariance matrix 212 for X3
and Xy using Eq. (3.11), as follows:

212 = 1512 - f>1f>;r
—0.047 0.044 0.003
0.056 —0.076 0.02

—0.003 0.032 —-0.029
—0.005 0 0.005

One can observe that each row and column in 53\12 sums to zero. Putting it all
together, from X7, ¥99 and X5 we obtain the sample covariance matrix as follows

~ (T, =
Z _ A"lfl A12
Y, XYoo

0.21 —-0.1 —-0.086 —0.024 —0.047  0.044  0.003

-0.1  0.222 —-0.096 —-0.027 0.056 —0.076 0.02
—0.086 —0.096 0.204 -0.023 —0.003  0.032 -0.029
=1-0.024 -0.027 -0.023 0.074 —0.005 0 0.005
—0.047  0.056 —0.003 —0.005 0.215 -0.184 —0.031
0.044 -0.076  0.032 0 —0.184  0.242 -0.059
0.003 0.02 —-0.029  0.005 —0.031 —0.059 0.09

In ¥, each row and column also sums to zero.

3.2.1 Attribute Dependence: Contingency Analysis

Testing for the independence of the two categorical random variables X; and X5 can
be done via contingency table analysis. The main idea is to set up a hypothesis testing
framework, where the null hypothesis Hy is that X; and X5 are independent, and the
alternative hypothesis H; is that they are dependent. We then compute the value
of the chi-square statistic x2 under the null hypothesis. Depending on the p-value,
we either accept or reject the null hypothesis; in the latter case the attributes are
considered to be dependent.

Contingency Table
A contingency table for X; and X, is the m; x ma matrix of observed counts n;; for
all pairs of values (ey;, e2;) in the given sample of size n, defined as

niy Rz e Mgy

~ N2l M22 o Ao,
Nig=n-Pia=

Nmil w2 o Npyme
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Table 3.5. Contingency table: sepal length vs. sepal width

Sepal width (X3)

;2\ Short Medium Long
: ds1 doo ds3 Row Counts
gﬂ Very Short (aj1) 7 33 5 ni=45
—~ Short (aj2) 24 18 8 n =50
el Long (a13) 13 30 0 nk =43
@ Very Long (a14) 3 7 2 ny=12

Column Counts n? =47 n3 =88 n2=15 n =150

where ?12 is the empirical joint PMF for X; and Xa, computed via Eq. (3.13). The
contingency table is then augmented with row and column marginal counts, as follows:

1 2
ny ny
Ni=n-p1=| : No=n-p2=| :
1 2
nml nmz

Note that the marginal row and column entries and the sample size satisfy the following
constraints:

mo mi m1 mo my mo
1_ B 2 _ B _ 1_ 2 _ B
ni_g nij nj_E nij n_E ni_g nj_g E nij
j=1 i=1 i=1 j=1 i=1 j=1

It is worth noting that both N; and N have a multinomial distribution with
parameters p; = (p%, R p;,l) and ps = (p%,...,p,%,z), respectively. Further, N5 also
has a multinomial distribution with parameters P15 = {p;;}, for 1 <i < m; and
1<j<ms.

Example 3.9 (Contingency Table). Table 3.4 shows the observed counts for the
discretized sepal length (X;) and sepal width (X3) attributes. Augmenting the
table with the row and column marginal counts and the sample size yields the final
contingency table shown in Table 3.5.

x2 Statistic and Hypothesis Testing
Under the null hypothesis X; and X5 are assumed to be independent, which means
that their joint probability mass function is given as
Pij=pi - b}
Under this independence assumption, the expected frequency for each pair of values
is given as
1 52 1,2
ny nj o nin

However, from the sample we already have the observed frequency of each pair
of values, n;;. We would like to determine whether there is a significant difference
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in the observed and expected frequencies for each pair of values. If there is no
significant difference, then the independence assumption is valid and we accept the
null hypothesis that the attributes are independent. On the other hand, if there is
a significant difference, then the null hypothesis should be rejected and we conclude
that the attributes are dependent.

The x?2 statistic quantifies the difference between observed and expected counts
for each pair of values; it is defined as follows:

miy mg

x2=22@ (3.15)

i=1 j=1

At this point, we need to determine the probability of obtaining the computed
x2 value. In general, this can be rather difficult if we do not know the sampling
distribution of a given statistic. Fortunately, for the x? statistic it is known that
its sampling distribution follows the chi-squared density function with ¢ degrees of
freedom:

4 1 _x
F™D = o ™ (3.16)
where the gamma function I' is defined as
I'k>0)= /xk’le’xdx (3.17)
0

The degrees of freedom, g, represent the number of independent parameters. In
the contingency table there are m; x my observed counts n;;. However, note that each
row i and each column j must sum to n} and n]z, respectively. Further, the sum of
the row and column marginals must also add to n; thus we have to remove (my +m2)
parameters from the number of independent parameters. However, doing this removes
one of the parameters, say n,,,m,, twice, so we have to add back one to the count. The
total degrees of freedom is therefore

g = ldom(Xy)| x |[dom(X2)| — (|dom(X1)| + |dom(X2)]) +1
=mimo —my —m2+1

=(m1—1(mz2—1)

p-value
The p-value of a statistic 0 is defined as the probability of obtaining a value at least
as extreme as the observed value, say z, under the null hypothesis, defined as

p-value(z) = P@ >z)=1—F(9)

where F(0) is the cumulative probability distribution for the statistic.

The p-value gives a measure of how surprising is the observed value of the statistic.
If the observed value lies in a low-probability region, then the value is more surprising.
In general, the lowerthe p-value, the more surprising the observed value, and the
more the grounds for rejecting the null hypothesis. The null hypothesis is rejected


oh140
Zvýraznění
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Table 3.6. Expected counts

Xa
Short (as1) | Medium (as2) | Short (as3)
Very Short (ai) 14.1 26.4 4.5
« | snort (@) 15.67 29.33 5.0
' | Long (a15) 13.47 25.23 4.3
Very Long (ai4) 3.76 7.04 1.2

if the p-value is below some significance level, «. For example, if « = 0.01, then we
reject the null hypothesis if p-value(z) <a. The significance level @ corresponds to the
probability of rejecting the null hypothesis when it is true. For a given significance
level o, the value of the test statistic, say z, with a p-value of p-value(z) = «, is
called a critical value. An alternative test for rejection of the null hypothesis is to
check if x2 > z, as in that case the p-value of the observed x? value is bounded by
o, that is, p-value(x?) < p-value(z) = «. The value 1 —« is also called the confidence
level.

Example 3.10. Consider the contingency table for sepal length and sepal width
in Table 3.5. We compute the expected counts using Eq. (3.14); these counts are
shown in Table 3.6. For example, we have

nin? 4547 _ 2115
150 150 ‘

€11 =

Next we use Eq. (3.15) to compute the value of the x? statistic, which is given
as x2=21.8.
Further, the number of degrees of freedom is given as

g=(my—1)-(my—1)=3-2=6

The plot of the chi-squared density function with 6 degrees of freedom is shown in
Figure 3.3. From the cumulative chi-squared distribution, we obtain

p-value(21.8) = 1 — F(21.8]6) = 1 — 0.9987 = 0.0013

At a significance level of o =0.01, we would certainly be justified in rejecting the null
hypothesis because the large value of the x?2 statistic is indeed surprising. Further,
at the 0.01 significance level, the critical value of the statistic is

z=F1(1-0.01/6)= F1(0.99/6) = 16.81

This critical value is also shown in Figure 3.3, and we can clearly see that the
observed value of 21.8 is in the rejection region, as 21.8 > z = 16.81. In effect, we
reject the null hypothesis that sepal length and sepal width are independent,
and accept the alternative hypothesis that they are dependent.
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f(x16)
0.15 +

0.12 +

0.09 +

0.06 +

a=0.01

0.03 +
Hp Rejection Region

| | | w |
0 T T T ol " — X

0 ) 10 15

Figure 3.3. Chi-squared distribution (q = 6).

3.3 MULTIVARIATE ANALYSIS

Assume that the dataset comprises d categorical attributes X; (1 < j < d) with

dom(X;) = {ajl,ajg,...,ajmj}. We are given n categorical points of the form x; =
(X1, Xi2s -, Xig) T with xij € dom(X;). The dataset is thus an n x d symbolic matrix
/X1 Xy - Xd\
X11  X12 o X4
D=|X21 X22 -+ X4
Xnl Xn2 ot Xnd

Each attribute X; is modeled as an m;-dimensional multivariate Bernoulli variable X;,
and their joint distribution is modeled as a d’ = Z‘;=1 m; dimensional vector random

variable
X1
X=1:
X4
Each categorical data point v = (v1,va,...,v.)T is therefore represented as a
d’-dimensional binary vector

Xi(vy) €1k
X(V) = . = .

X (va) €dk,
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provided v; = aj,;, the k;jth symbol of X;. Here ey, is the k;th standard basis vector
in R™.

Mean
Generalizing from the bivariate case, the mean and sample mean for X are given as

.31 p1 51 P1
p=EX]=1:[=]: p=(:]=1":
Ky Pa %] Da

)T

i

where p; = (pi,..., P,in,-)T is the PMF for X;, and p; = (p,..., p’ )T is the empirical

PMF for X;.

Covariance Matrix
The covariance matrix for X, and its estimate from the sample, are given as the d’ x d’
matrices:

X1 X o Xy ilTl T - T
T %, 0 Toy s, 2 - T
s_| %" ‘ s_|*v
~T ~T —~
Tl o o Zaa T, 2, o Zw

where d’ = Y% m;, and 3;; (and fij) is the m; x m; covariance matrix (and its
estimate) for attributes X; and X;:

X =P _Pip;r iij =Py —fh'f);r (3.18)

Here P;; is the joint PMF and '13,7 is the empirical joint PMF for X; and X;, which
can be computed using Eq. (3.13).

Example 3.11 (Multivariate Analysis). Let us consider the 3-dimensional subset of
the Iris dataset, with the discretized attributes sepal length (X;) and sepal
width (X3), and the categorical attribute class (Xj3). The domains for X;
and Xy are given in Table 3.1 and Table 3.3, respectively, and dom(X3) =
{iris-versicolor,iris-setosa,iris-virginica}. Each value of X3 occurs 50
times.
The categorical point x = (Short,Medium, iris-versicolor) is modeled as the
vector
€12
X(x)=|ex|=(0,100]0,1,0]1,00"T R
€31
From Example 3.8 and the fact that each value in dom(X3) occurs 50 times in
a sample of n = 150, the sample mean is given as

iy D1
i=a,|=[p]=03,0.3330.287,0.08]0.313,0.587,0.1]0.33,0.33,0.33)"
fis D3
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Using P3 = (0.33,0.33,0.33)T we can compute the sample covariance matrix for
X3 using Eq. (3.9):
0.222 —-0.111 -0.111
Ta3=|-0111 0222 —0.111
—0.111 -0.111 0.222

Using Eq. (3.18) we obtain

—0.067 0.16 —0.093
0.082 —0.038 —0.044
0.011 -0.096  0.084

—-0.027 —-0.027  0.053

Yi3=

0.076 —0.098  0.022
Yo3=|-0.042 0.044 -0.002
—-0.033  0.053 —0.02

Combined with 211, fzg and 212 from Example 3.8, the final sample covariance
matrix is the 10 x 10 symmetric matrix given as

Th T Zis
Y=|2, X2 X3

213 223 Y33

3.3.1 Multiway Contingency Analysis

For multiway dependence analysis, we have to first determine the empirical joint
probability mass function for X:

n
] 1 N
1i9...0ig ~
flewy,e2ip,...,€q1)) = - E Lijig.iy(xi) = — = Phia.ig
=1

where I, i, is the indicator variable
1 if xp1 =eip, Xk2 = €209, - -+ 5 Xka = €aiy

Lijig.iy(xx) =
iz 0 otherwise

The sum of I, ;, over all the n points in the sample yields the number of occurrences,
Mijiy..ig, Of the symbolic vector (ai;;,a2,,...,aq,). Dividing the occurrences by the
sample size results in the probability of observing those symbols. Using the notation
i=(i1,i2,...,ig) to denote the index tuple, we can write the joint empirical PMF as
the d-dimensional matrix P of size M1 X Mo X+ XMy = ]_[?21 m;, given as

ﬁ(i) = {fal} for all index tuples i, with 1 <i; <mq,...,1<iy<my
where p; = piyiy..i;- The d-dimensional contingency table is then given as

N:nx?:{ni} for all index tuples i, with 1 <i; <mq,...,1<iy; <my
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where n; = n;,;,..;,- The contingency table is augmented with the marginal count
vectors N; for all d attributes X;:

where p; is the empirical PMF for X;.

x2-Test
We can test for a d-way dependence between the d categorical attributes using the null
hypothesis Hy that they are d-way independent. The alternative hypothesis H; is that
they are not d-way independent, that is, they are dependent in some way. Note that
d-dimensional contingency analysis indicates whether all d attributes taken together
are independent or not. In general we may have to conduct k-way contingency analysis
to test if any subset of k <d attributes are independent or not.

Under the null hypothesis, the expected number of occurrences of the symbol
tuple (a1, ,a2i,, ..., aq;,) is given as

n2 . nd

ei=n-pi=n- Hp, i ,;f,l = (3.19)

The chi-squared statistic measures the difference between the observed counts n;
and the expected counts e;:

m1p  m2 my )
x2= Z M = Z Z 2 (i ig,.ig = €inig,.ig) (3.20)
i i1=lig=1  ig=1 €iyig,...ig

The x?2 statistic follows a chi-squared density function with ¢ degrees of freedom.
For the d-way contingency table we can compute g by noting that there are ostensibly
]_[;i=1 |dom(X;)| independent parameters (the counts). However, we have to remove
Zle |dom(X;)| degrees of freedom because the marginal count vector along each
dimension X; must equal N;. However, doing so removes one of the parameters d
times, so we need to add back d — 1 to the free parameters count. The total number
of degrees of freedom is given as

d d
g =[]ldomX)| =" ldom(X;)| +(d - 1)

i=1 i=1
_ (}jmi)_(ém,.)+d_1 (.21)

To reject the null hypothesis, we have to check whether the p-value of the observed
x? value is smaller than the desired significance level o (say a = 0.01) using the
chi-squared density with g degrees of freedom [Eq. (3.16)].
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Figure 3.4. 3-Way contingency table (with marginal counts along each dimension).

Table 3.7. 3-Way expected counts

X3(as1/azz2/ass)
Xs
azi | a2z | az3
ai 1.25 2.35 0.40

e 4.49 8.41 1.43
ais 4.70 8.80 1.50

Xy

Example 3.12. Consider the 3-way contingency table in Figure 3.4. It shows the
observed counts for each tuple of symbols (a1;, azj, asi) for the three attributes sepal
length (X;), sepal width (X3), and class (X3). From the marginal counts for X;
and X5 in Table 3.5, and the fact that all three values of X3 occur 50 times, we can
compute the expected counts [Eq. (3.19)] for each cell. For instance,

ny-n3-nd _ 45-47-50

= =4.7
1502 150150

€4,1,1) =

The expected counts are the same for all three values of X3 and are given in Table 3.7.
The value of the x? statistic [Eq. (3.20)] is given as

x? =231.06
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Using Eq. (3.21), the number of degrees of freedom is given as
q=4-3-3—(44+34+3)+2=36—-10+2=28

In Figure 3.4 the counts in bold are the dependent parameters. All other counts are
independent. In fact, any eight distinct cells could have been chosen as the dependent
parameters.

For a significance level of @ =0.01, the critical value of the chi-square distribution
is 7 = 48.28. The observed value of x2 =231.06 is much greater than z, and it is
thus extremely unlikely to happen under the null hypothesis. We conclude that the
three attributes are not 3-way independent, but rather there is some dependence
between them. However, this example also highlights one of the pitfalls of multiway
contingency analysis. We can observe in Figure 3.4 that many of the observed counts
are zero. This is due to the fact that the sample size is small, and we cannot reliably
estimate all the multiway counts. Consequently, the dependence test may not be
reliable as well.

3.4 DISTANCE AND ANGLE

With the modeling of categorical attributes as multivariate Bernoulli variables, it is
possible to compute the distance or the angle between any two points x; and x;:

eli1 eljl

€dig €d jg

The different measures of distance and similarity rely on the number of matching
and mismatching values (or symbols) across the d attributes X,. For instance, we can
compute the number of matching values s via the dot product:

d
T T
S=X X = Z(ekik) €kji

k=1

On the other hand, the number of mismatches is simply d —s. Also useful is the norm
of each point:

2_ T
Ix " =x;x;=d

Euclidean Distance
The Euclidean distance between x; and x; is given as

8(x,%5) = ||X,- —X; H = \/XZTX,- — 2%;X; —l—XJTXj =42 —y)

Thus, the maximum Euclidean distance between any two points is /2d, which happens
when there are no common symbols between them, that is, when s = 0.
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Hamming Distance
The Hamming distance between x; and x; is defined as the number of mismatched
values:

1
Su(xi,x;)=d—s= 55(Xi,Xj)2
Hamming distance is thus equivalent to half the squared Euclidean distance.

Cosine Similarity
The cosine of the angle between x; and x; is given as

X;IXj N
cos) = —————F = —
<l I

Jaccard Coefficient

The Jaccard Coefficient is a commonly used similarity measure between two
categorical points. It is defined as the ratio of the number of matching values to
the number of distinct values that appear in both x; and x;, across the d attributes:

N

R
2d—s)+s 2d—s

J(Xi7Xj) =

where we utilize the observation that when the two points do not match for dimension
k, they contribute 2 to the distinct symbol count; otherwise, if they match, the number
of distinct symbols increases by 1. Over the d — s mismatches and s matches, the
number of distinct symbols is 2(d —s) + .

Example 3.13. Consider the 3-dimensional categorical data from Example 3.11. The
symbolic point (Short,Medium, iris-versicolor) is modeled as the vector

€12
x1=|exw |=(0,1,0,0]0,1,0/1,0,00" e R

€31

and the symbolic point (VeryShort,Medium, iris-setosa) is modeled as

€11
xoa=|exwn | =(1,0,0,0]0,1,0/0,1,00)" e R'®

es2
The number of matching symbols is given as
5 =X X2 = (e12) Te11 + (e22) Texn + (e31) Tes2
1
=0 1 0 0

0

0 0
+(0 1 01|+ 0 0)f1
0 0 0

—04+140=1
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The Euclidean and Hamming distances are given as

8(x1,%2) =/2(d—s5)=~2-2=+/4=2
(SH(Xl,Xz):d—SZ?)—].:Q

The cosine and Jaccard similarity are given as

s 1
cosf =—=—-=0.333
d 3

) 1
=-=0.2
2d—s 5

J(x1,%x2) =

3.5 DISCRETIZATION

Discretization, also called binning, converts numeric attributes into categorical ones.
It is usually applied for data mining methods that cannot handle numeric attributes.
It can also help in reducing the number of values for an attribute, especially if there
is noise in the numeric measurements; discretization allows one to ignore small and
irrelevant differences in the values.

Formally, given a numeric attribute X, and a random sample {x;}!_; of size n drawn
from X, the discretization task is to divide the value range of X into k consecutive
intervals, also called bins, by finding k — 1 boundary values vy, va, ..., v_1 that yield
the k intervals:

[Xmin, v1], (V1,v2], ..., (Uk—1, Xmax]

where the extremes of the range of X are given as
Xmin = m,in{xi} Xmax — m,ax{xi}
1 1

The resulting k intervals or bins, which span the entire range of X, are usually mapped
to symbolic values that comprise the domain for the new categorical attribute X.

Equal-Width Intervals
The simplest binning approach is to partition the range of X into k equal-width
intervals. The interval width is simply the range of X divided by k:
_ Xmax — Xmin
k
Thus, the ith interval boundary is given as

Vi =Xmin +iw, fori=1,...,k—1

Equal-Frequency Intervals

In equal-frequency binning we divide the range of X into intervals that contain
(approximately) equal number of points; equal frequency may not be possible due
to repeated values. The intervals can be computed from the empirical quantile or
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inverse cumulative distribution function F~1(g) for X [Eq. (2.2)]. Recall that F~*(q) =
min{x | P(X < x) > ¢}, for ¢ € [0, 1]. In particular, we require that each interval contain
1/k of the probability mass; therefore, the interval boundaries are given as follows:

vi=FYi/k)fori=1,... k—1

Example 3.14. Consider the sepal length attribute in the Iris dataset. Its
minimum and maximum values are

Xmin = 4.3 Xmax = 7.9
We discretize it into k =4 bins using equal-width binning. The width of an interval
is given as

79-43 3.6
A R
w 1 1

and therefore the interval boundaries are
v1 =4.3+0.9=5.2 v, =4.3+2-09=6.1 v3=4.3+3-09=7.0

The four resulting bins for sepal length are shown in Table 3.1, which also shows
the number of points n; in each bin, which are not balanced among the bins.

For equal-frequency discretization, consider the empirical inverse cumulative
distribution function (CDF) for sepal length shown in Figure 3.5. With k =4
bins, the bin boundaries are the quartile values (which are shown as dashed lines):

vi = F~1(0.25)=5.1 vo = F~1(0.50) = 5.8 v3=F10.75) = 6.4

The resulting intervals are shown in Table 3.8. We can see that although the interval
widths vary, they contain a more balanced number of points. We do not get identical

F(q)

0 0.25 0.50 0.75 1.00
q

Figure 3.5. Empirical inverse CDF: sepal length.
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Table 3.8. Equal-frequency discretization: sepal length

Bin Width Count
[4.3,5.1] 0.8 ny =41
(5.1,5.8] 0.7 ny =39
(5.8,6.4] 0.6 n3 =35
(6.4,7.9] 1.5 ngy =35

counts for all the bins because many values are repeated; for instance, there are nine
points with value 5.1 and there are seven points with value 5.8.

3.6 FURTHER READING

For a comprehensive introduction to categorical data analysis see Agresti (2012).
Some aspects also appear in Wasserman (2004). For an entropy-based supervised
discretization method that takes the class attribute into account see Fayyad and Irani

(1993).

Agresti, A. (2012). Categorical Data Analysis,
Fayyad, U. M. and Irani, K. B. (1993). Multi-interval Discretization of

Continuous-valued Attributes for Classification Learning. In Proceedings of the
13th International Joint Conference on Artificial Intelligence. Morgan-Kaufmann,

pp. 1022-1027.
Wasserman, L. (2004). All of Statistics: A Concise Course in Statistical Inference.

New York: Springer Science + Business Media.

3.7 EXERCISES

Q1. Show that for categorical points, the cosine similarity between any two vectors in lies

in the range cos@ € [0, 1], and consequently 6 € [0°, 90°].

Q2. Prove that E[(X1 — p1)(Xa — o) T| = E[X1 X7 | — E[X1]E[X2]T.

Table 3.9. Contingency table for Q3

| I Z=t | Z=g |
Y =d Y=e Y =d Y=e
X=a 5 10 10 5
X=b 15 5 5 20
X=c 20 10 25 10

Q3. Consider the 3-way contingency table for attributes X,Y,Z shown in Table 3.9.
Compute the x2 metric for the correlation between Y and Z. Are they dependent
or independent at the 95% confidence level? See Table 3.10 for x2 values.
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Table 3.10. x?2 Critical values for different p-values for different degrees of freedom (q): For example,
for q =5 degrees of freedom, the critical value of x2 =11.070 has p-value = 0.05.

0995 099 0975 0.95 0.90 0.10 0.05 0.025 0.01 0.005

— — 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879
0.010 0.020 0.051 0.103 0.211  4.605 5.991 7.378 9.210  10.597
0.072 0.115 0.216 0.352 0.584  6.251 7.815 9.348  11.345 12.838
0.207 0.297 0484 0.711 1.064 7.779 9.488  11.143 13.277 14.860
0.412 0.554 0.831 1.145 1.610 9.236  11.070 12.833 15.086 16.750
0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548

S TR W N PR

Q4. Consider the “mixed” data given in Table 3.11. Here X; is a numeric attribute and
X9 is a categorical one. Assume that the domain of Xso is given as dom(Xs) = {a, b}.
Answer the following questions.

(a) What is the mean vector for this dataset?
(b) What is the covariance matrix?

Q5. In Table 3.11, assuming that X; is discretized into three bins, as follows:

c1 = (=2, —0.5]
c2 = (—0.5,0.5|
c3 = (0.5, 2]

Answer the following questions:
(a) Construct the contingency table between the discretized X; and X attributes.
Include the marginal counts.
(b) Compute the x? statistic between them.
(c) Determine whether they are dependent or not at the 5% significance level. Use the
%2 critical values from Table 3.10.

Table 3.11. Dataset for Q4 and Q5

X1
0.3
—0.3
0.44
—0.60
0.40
1.20
—0.12
—1.60
1.60
—1.32

Z

QA T T Q& T Q& & & & 9




The traditional paradigm in data analysis typically assumes that each data instance
is independent of another. However, often data instances may be connected or linked
to other instances via various types of relationships. The instances themselves may
be described by various attributes. What emerges is a network or graph of instances
(or nodes), connected by links (or edges). Both the nodes and edges in the graph
may have several attributes that may be numerical or categorical, or even more
complex (e.g., time series data). Increasingly, today’s massive data is in the form
of such graphs or networks. Examples include the World Wide Web (with its Web
pages and hyperlinks), social networks (wikis, blogs, tweets, and other social media
data), semantic networks (ontologies), biological networks (protein interactions, gene
regulation networks, metabolic pathways), citation networks for scientific literature,
and so on. In this chapter we look at the analysis of the link structure in graphs that
arise from these kinds of networks. We will study basic topological properties as well
as models that give rise to such graphs.

4.1 GRAPH CONCEPTS

Graphs
Formally, a graph G = (V,E) is a mathematical structure consisting of a finite
nonempty set V of vertices or nodes, and a set E CV x V of edges consisting of
unordered pairs of vertices. An edge from a node to itself, (v;, v;), is called a loop. An
undirected graph without loops is called a simple graph. Unless mentioned explicitly,
we will consider a graph to be simple. An edge e = (v;, v;) between v; and v; is said to
be incident with nodes v; and v;; in this case we also say that v; and v; are adjacent to
one another, and that they are neighbors. The number of nodes in the graph G, given
as |V| =n, is called the order of the graph, and the number of edges in the graph,
given as |E| =m, is called the size of G.

A directed graph or digraph has an edge set E consisting of ordered pairs of
vertices. A directed edge (v;, v;) is also called an arc, and is said to be from v; to v;.
We also say that v; is the tail and v; the head of the arc.

93
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A weighted graph consists of a graph together with a weight w;; for each edge
(vi, vj) € E. Every graph can be considered to be a weighted graph in which the edges
have weight one.

Subgraphs

A graph H = (Vy, Ep) is called a subgraph of G = (V,E) if Vg CV and Eg C E. We
also say that G is a supergraph of H. Given a subset of the vertices V' C V, the induced
subgraph G’ = (V’, E) consists exactly of all the edges present in G between vertices
in V'. More formally, for all v;,v; € V', (v;,v;) € E' <= (v;,v;) € E. In other words,
two nodes are adjacent in G’ if and only if they are adjacent in G. A (sub)graph is
called complete (or a clique) if there exists an edge between all pairs of nodes.

Degree
The degree of a node v; € V is the number of edges incident with it, and is denoted as
d(v;) or just d;. The degree sequence of a graph is the list of the degrees of the nodes
sorted in non-increasing order.

Let N; denote the number of vertices with degree k. The degree frequency
distribution of a graph is given as

(N()’Nla ---7NZ)

where ¢ is the maximum degree for a node in G. Let X be a random variable denoting
the degree of a node. The degree distribution of a graph gives the probability mass
function f for X, given as

(£(0), f(D),..., f(D)

where f(k) = P(X =k) = % is the probability of a node with degree k, given as
the number of nodes N; with degree k, divided by the total number of nodes n. In
graph analysis, we typically make the assumption that the input graph represents a
population, and therefore we write f instead of f for the probability distributions.

For directed graphs, the indegree of node v;, denoted as id(v;), is the number of
edges with v; as head, that is, the number of incoming edges at v;. The outdegree
of v;, denoted od(v;), is the number of edges with v; as the tail, that is, the number
of outgoing edges from v;.

Path and Distance
A walk in a graph G between nodes x and y is an ordered sequence of vertices, starting
at x and ending at y,

x=v05 vla LR} Ut—la vt=y

such that there is an edge between every pair of consecutive vertices, that is,
(vi—1,v;) € E for all i = 1,2,...,¢. The length of the walk, ¢, is measured in terms
of hops — the number of edges along the walk. In a walk, there is no restriction on the
number of times a given vertex may appear in the sequence; thus both the vertices
and edges may be repeated. A walk starting and ending at the same vertex (i.e., with
y=x) is called closed. A trail is a walk with distinct edges, and a path is a walk with
distinct vertices (with the exception of the start and end vertices). A closed path with
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v7 Ug
(a) (b)

Figure 4.1. (a) A graph (undirected). (b) A directed graph.

length 7 > 3 is called a cycle, that is, a cycle begins and ends at the same vertex and
has distinct nodes.

A path of minimum length between nodes x and y is called a shortest path, and the
length of the shortest path is called the distance between x and y, denoted as d(x, y).
If no path exists between the two nodes, the distance is assumed to be d(x,y) = co.

Connectedness
Two nodes v; and v; are said to be connected if there exists a path between them.
A graph is connected if there is a path between all pairs of vertices. A connected
component, or just component, of a graph is a maximal connected subgraph. If a
graph has only one component it is connected; otherwise it is disconnected, as by
definition there cannot be a path between two different components.

For a directed graph, we say that it is strongly connected if there is a (directed)
path between all ordered pairs of vertices. We say that it is weakly connected if there
exists a path between node pairs only by considering edges as undirected.

Example 4.1. Figure 4.1a shows a graph with |V| =8 vertices and |E| =11 edges.
Because (v1,v5) € E, we say that v; and vs are adjacent. The degree of v; is d(vy) =
d; = 4. The degree sequence of the graph is

(47 47 47 37 27 27 27 1)
and therefore its degree frequency distribution is given as
(No,N1,N2,N3,N4) =(0,1,3,1,3)

We have Ng = 0 because there are no isolated vertices, and N4y = 3 because there are
three nodes, v1, v4 and vs, that have degree k = 4; the other numbers are obtained
in a similar fashion. The degree distribution is given as

(£0), £(1), £(2), £3), f(4)) = (0,0.125,0.375,0.125, 0.375)

The vertex sequence (vs, v, V2, V5, V1, V2,Vs) is a walk of length 6 between vs
and vg. We can see that vertices v; and vy have been visited more than once. In
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contrast, the vertex sequence (vs, v4, v7, Vs, Us, U2, Vg) is a path of length 6 between
v3 and vg. However, this is not the shortest path between them, which happens
to be (vs,v1,v2,vs) with length 3. Thus, the distance between them is given as
d(Ug 9 U6) =3,

Figure 4.1b shows a directed graph with 8 vertices and 12 edges. We can see that
edge (vs, vg) is distinct from edge (vs, vs). The indegree of v7 is id(v7) = 2, whereas
its outdegree is od(v7) = 0. Thus, there is no (directed) path from vy to any other
vertex.

Adjacency Matrix
A graph G = (V, E), with |V| =n vertices, can be conveniently represented in the form
of an n x n, symmetric binary adjacency matrix, A, defined as

AG. ) = !1 if v; is adjacent to v;
0 otherwise
If the graph is directed, then the adjacency matrix A is not symmetric, as (v;,v;) € E
obviously does not imply that (v;,v;) € E.
If the graph is weighted, then we obtain an n x n weighted adjacency matrix, A,
defined as

w;; if v; is adjacent to v;

0 otherwise

A(i,j)={

where w;; is the weight on edge (v, v;) € E. A weighted adjacency matrix can always
be converted into a binary one, if desired, by using some threshold 7 on the edge
weights

1 ifw,'jzl'

AG, j)= ! (4.1)

0 otherwise

Graphs from Data Matrix
Many datasets that are not in the form of a graph can nevertheless be converted
into one. Let D = {x;}7_; (with x; € R?), be a dataset consisting of n points in a
d-dimensional space. We can define a weighted graph G = (V,E), where there exists
a node for each point in D, and there exists an edge between each pair of points, with
weight

w;j = sim(x;, X;)
where sim(x;,x;) denotes the similarity between points x; and x;. For instance,
similarity can be defined as being inversely related to the Euclidean distance between
the points via the transformation

_ _ i =]
w;; = sim(x;,X;) = exp gz (4.2)

where o is the spread parameter (equivalent to the standard deviation in the normal
density function). This transformation restricts the similarity function sim() to lie
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Figure 4.2. Iris similarity graph.

in the range [0, 1]. One can then choose an appropriate threshold t and convert the
weighted adjacency matrix into a binary one via Eq. (4.1).

Example 4.2. Figure 4.2 shows the similarity graph for the Iris dataset (see
Table 1.1). The pairwise similarity between distinct pairs of points was computed
using Eq. (4.2), with o = 1/4/2 (we do not allow loops, to keep the graph simple).
The mean similarity between points was 0.197, with a standard deviation of 0.290.

A binary adjacency matrix was obtained via Eq. (4.1) using a threshold of 7 =
0.777, which results in an edge between points having similarity higher than two
standard deviations from the mean. The resulting Iris graph has 150 nodes and 753
edges.

The nodes in the Iris graph in Figure 4.2 have also been categorized according
to their class. The circles correspond to class iris-versicolor, the triangles
to iris-virginica, and the squares to iris-setosa. The graph has two big
components, one of which is exclusively composed of nodes labeled as iris-setosa.

4.2 TOPOLOGICAL ATTRIBUTES

In this section we study some of the purely topological, that is, edge-based or
structural, attributes of graphs. These attributes are local if they apply to only a
single node (or an edge), and global if they refer to the entire graph.
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Degree
We have already defined the degree of a node v; as the number of its neighbors. A
more general definition that holds even when the graph is weighted is as follows:

di =7 AG,j)
J

The degree is clearly a local attribute of each node. One of the simplest global attribute
is the average degree:

Zi di

n

Ha =
The preceding definitions can easily be generalized for (weighted) directed graphs.

For example, we can obtain the indegree and outdegree by taking the summation over
the incoming and outgoing edges, as follows:

id(vi) =Y A(j.i)
J
od(v;) = _A(. j)
J
The average indegree and average outdegree can be obtained likewise.

Average Path Length
The average path length, also called the characteristic path length, of a connected
graph is given as

_ 222 d i) .
=T n(n—l) Z;d(”””’

where n is the number of nodes in the graph, and d(v;,v;) is the distance between
v; and v;. For a directed graph, the average is over all ordered pairs of vertices:

HL= n(n—l) ZZd(v””’

For a disconnected graph the average is taken over only the connected pairs of vertices.

Eccentricity
The eccentricity of a node v; is the maximum distance from v; to any other node in
the graph:

e(v;) = max{d(vi, Uj)}
j

If the graph is disconnected the eccentricity is computed only over pairs of vertices
with finite distance, that is, only for vertices connected by a path.
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Radius and Diameter
The radius of a connected graph, denoted r(G), is the minimum eccentricity of any
node in the graph:

F(G) = minfe(w)} = min|max{d(;, v}
11 1 J

The diameter, denoted d(G), is the maximum eccentricity of any vertex in the
graph:

d(G) = max{e(v;)} = max{d (v, v;)}
i L]

For a disconnected graph, the diameter is the maximum eccentricity over all the
connected components of the graph.

The diameter of a graph G is sensitive to outliers. A more robust notion is
effective diameter, defined as the minimum number of hops for which a large fraction,
typically 90%, of all connected pairs of nodes can reach each other. More formally,
let H(k) denote the number of pairs of nodes that can reach each other in k& hops
or less. The effective diameter is defined as the smallest value of k such that
H(k) > 0.9 x H(d(G)).

Example 4.3. For the graph in Figure 4.1a, the eccentricity of node vy is e(vs) =3
because the node farthest from it is vg and d(vy, vg) = 3. The radius of the graph is
r(G) = 2; both v; and vs have the least eccentricity value of 2. The diameter of the
graph is d(G) =4, as the largest distance over all the pairs is d(vg, v7) = 4.

The diameter of the Iris graph is d(G) =11, which corresponds to the bold path
connecting the gray nodes in Figure 4.2. The degree distribution for the Iris graph
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Figure 4.3. Iris graph: degree distribution.
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Figure 4.4. Iris graph: path length histogram.

is shown in Figure 4.3. The numbers at the top of each bar indicate the frequency.
For example, there are exactly 13 nodes with degree 7, which corresponds to the

probability f(7) = 13 = 0.0867.

The path length histogram for the Iris graph is shown in Figure 4.4. For instance,
1044 node pairs have a distance of 2 hops between them. With n = 150 nodes, there

are (g) =11, 175 pairs. Out of these 6502 pairs are unconnected, and there are a total

of 4673 reachable pairs. Out of these % = 0.89 fraction are reachable in 6 hops,
4415

Io73 = 0.94 fraction are reachable in 7 hops. Thus, we can determine that the
effective diameter is 7. The average path length is 3.58.

and

Clustering Coefficient

The clustering coefficient of a node v; is a measure of the density of edges in the
neighborhood of v;. Let G; = (V;,E;) be the subgraph induced by the neighbors of
vertex v;. Note that v; € V;, as we assume that G is simple. Let |V;| = n; be the
number of neighbors of v;, and |E;| = m; be the number of edges among the neighbors
of v;. The clustering coefficient of v; is defined as

Clu) = no. of edges in G; _omy 2-m;

maximum number of edges in G; o @ - n;(n; —1)

The clustering coefficient gives an indication about the “cliquishness” of a node’s
neighborhood, because the denominator corresponds to the case when G; is a complete
subgraph.
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The clustering coefficient of a graph G is simply the average clustering coefficient
over all the nodes, given as

1
CGy == Cw)

Because C(v;) is well defined only for nodes with degree d(v;) > 2, we can define
C(v;) =0 for nodes with degree less than 2. Alternatively, we can take the summation
only over nodes with d(v;) > 2.

The clustering coefficient C(v;) of a node is closely related to the notion of
transitive relationships in a graph or network. That is, if there exists an edge between
v; and vj, and another between v; and vy, then how likely are v; and v to be linked
or connected to each other. Define the subgraph composed of the edges (v;,v;) and
(vi, vx) to be a connected triple centered at v;. A connected triple centered at v; that
includes (v;,vy) is called a triangle (a complete subgraph of size 3). The clustering
coefficient of node v; can be expressed as
no. of triangles including v;

Cv) =

no. of connected triples centered at v;

Note that the number of connected triples centered at v; is simply (‘g) = w, where

2
d; = n; is the number of neighbors of v;.

Generalizing the aforementioned notion to the entire graph yields the transitivity
of the graph, defined as

T(G) = 3 x no. of triangles in G

no. of connected triples in G

The factor 3 in the numerator is due to the fact that each triangle contributes to
three connected triples centered at each of its three vertices. Informally, transitivity
measures the degree to which a friend of your friend is also your friend, say, in a social
network.

Efficiency

The efficiency for a pair of nodes v; and v; is defined as m If v; and v; are not
connected, then d(v;,v;) = 0o and the efficiency is 1/00 = 0. As such, the smaller the
distance between the nodes, the more “efficient” the communication between them.
The efficiency of a graph G is the average efficiency over all pairs of nodes, whether

connected or not, given as
2 1
nn—1) Xl:; d (i, vy)

The maximum efficiency value is 1, which holds for a complete graph.

The local efficiency for a node v; is defined as the efficiency of the subgraph G;
induced by the neighbors of v;. Because v; & G;, the local efficiency is an indication of
the local fault tolerance, that is, how efficient is the communication between neighbors
of v; when v; is removed or deleted from the graph.
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©

Figure 4.5. Subgraph G4 induced by node v4.

Example 4.4. For the graph in Figure 4.1a, consider node vy4. Its neighborhood graph
is shown in Figure 4.5. The clustering coefficient of node vy is given as
2 2
Clvy) = ===033
() 6
The clustering coefficient for the entire graph (over all nodes) is given as

C(G)—1 it 04040) =22 =03125
“s\2"3 33 8

The local efficiency of vy is given as

2 ( 1 . 1 n 1 n 1 n 1 n 1 >
4-3\d(v1,v3)  d(vi,vs) d(vi,v7)  d(vs,vs) d(vs,vr)  d(vs,vr)
1 2.5

= (1+1404+05+0+0)= = =0417

4.3 CENTRALITY ANALYSIS

The notion of centrality is used to rank the vertices of a graph in terms of how “central”
or important they are. A centrality can be formally defined as a function ¢: V — R,
that induces a total order on V. We say that v; is at least as central as v; if c(v;) > c(v;).

4.3.1 Basic Centralities

Degree Centrality

The simplest notion of centrality is the degree d; of a vertex v; — the higher the degree,
the more important or central the vertex. For directed graphs, one may further consider
the indegree centrality and outdegree centrality of a vertex.
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Eccentricity Centrality
According to this notion, the less eccentric a node is, the more central it is. Eccentricity
centrality is thus defined as follows:

1 1
e(v;) max; {d(vi,v)}

c(v) =

A node v; that has the least eccentricity, that is, for which the eccentricity equals the
graph radius, e(v;) =r(G), is called a center node, whereas a node that has the highest
eccentricity, that is, for which eccentricity equals the graph diameter, e(v;) = d(G), is
called a periphery node.

Eccentricity centrality is related to the problem of facility location, that is,
choosing the optimum location for a resource or facility. The central node minimizes
the maximum distance to any node in the network, and thus the most central node
would be an ideal location for, say, a hospital, because it is desirable to minimize the
maximum distance someone has to travel to get to the hospital quickly.

Closeness Centrality
Whereas eccentricity centrality uses the maximum of the distances from a given node,
closeness centrality uses the sum of all the distances to rank how central a node is

1

c(v) = 721“1(1)1'5 o)

A node v; with the smallest total distance, Zjd(vi, v;), is called the median node.

Closeness centrality optimizes a different objective function for the facility location
problem. It tries to minimize the total distance over all the other nodes, and thus a
median node, which has the highest closeness centrality, is the optimal one to, say,
locate a facility such as a new coffee shop or a mall, as in this case it is not as important
to minimize the distance for the farthest node.

Betweenness Centrality

For a given vertex v; the betweenness centrality measures how many shortest paths
between all pairs of vertices include v;. This gives an indication as to the central
“monitoring” role played by v; for various pairs of nodes. Let n;; denote the number
of shortest paths between vertices v; and v, and let ;. (v;) denote the number of such
paths that include or contain v;. Then the fraction of paths through v; is denoted as

vik(v) = 2y vi)
Tk
If the two vertices v; and v, are not connected, we assume yj; = 0.
The betweenness centrality for a node v; is defined as

C(W)=ZZW=ZZW;—F:[) (4.3)

JE ki J# kY
k>j k>j
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Table 4.1. Centrality values

Centrality ‘ | vy | Vo | V3 | on ‘ U5 ‘ Vg ‘ vy ‘ vg
Degree 4 3 2 4 4 1 2 2
Eccentricity 0.5 0.33 0.33 0.33 0.5 0.25 0.25 0.33
e(v;) 2 3 3 3 2 4 4 3
Closeness 0.100 0.083 0.071 0.091 0.100 0.056 0.067 0.071
Zj d(vi,v;) 10 12 14 11 10 18 15 14
Betweenness 4.5 6 0 5 6.5 0 0.83 1.17

Example 4.5. Consider Figure 4.1a. The values for the different node centrality
measures are given in Table 4.1. According to degree centrality, nodes v1, v4, and vs
are the most central. The eccentricity centrality is the highest for the center nodes
in the graph, which are v; and vs. It is the least for the periphery nodes, of which
there are two, vg and, v7.

Nodes v; and vs have the highest closeness centrality value. In terms of
betweenness, vertex vs is the most central, with a value of 6.5. We can compute
this value by considering only those pairs of nodes v; and v, that have at least one
shortest path passing through vs, as only these node pairs have yj, > 0 in Eq. (4.3).
We have

c(Vs) = Y18 + Vou + Var + V28 + V38 + Vae + Vag + Ver + Ves

—1+1~|—2—|—1+2+1+1+2+1—65
23 3 2 2 3 7

4.3.2 Web Centralities

We now consider directed graphs, especially in the context of the Web. For example,
hypertext documents have directed links pointing from one document to another;
citation networks of scientific articles have directed edges from a paper to the cited
papers, and so on. We consider notions of centrality that are particularly suited to
such Web-scale graphs.

Prestige
We first look at the notion of prestige, or the eigenvector centrality, of a node in a
directed graph. As a centrality, prestige is supposed to be a measure of the importance
or rank of a node. Intuitively the more the links that point to a given node, the
higher its prestige. However, prestige does not depend simply on the indegree; it also
(recursively) depends on the prestige of the nodes that point to it.

Let G = (V,E) be a directed graph, with |V| =n. The adjacency matrix of G is
an n X n asymmetric matrix A given as

1 if (u,v)€eE

A s =
(- v) 0 if (u,v)€E
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(a)

00010 00100
001 01 000 1 1

A=]1 0 0 0 0 AT=]l0 1 0 1 0
011 0 1 1 00 00
01000 01010
(b) (c)

Figure 4.6. Example graph (a), adjacency matrix (b), and its transpose (c).

Let p(u) be a positive real number, called the prestige score for node u. Using the
intuition that the prestige of a node depends on the prestige of other nodes pointing
to it, we can obtain the prestige score of a given node v as follows:

pw) =A@, v)- pu)

u

=Y AT pw)

For example, in Figure 4.6, the prestige of vs depends on the prestige of vy and vy.
Across all the nodes, we can recursively express the prestige scores as

where p is an n-dimensional column vector corresponding to the prestige scores for
each vertex.

Starting from an initial prestige vector we can use Eq. (4.4) to obtain an updated
prestige vector in an iterative manner. In other words, if p;_; is the prestige vector
across all the nodes at iteration k — 1, then the updated prestige vector at iteration k
is given as

pe=ATpi
= AT(A Do) = (AT) prs
= (AT)2 (ATprg) = (AT)SPk—?,

= (AT)k Po

where pg is the initial prestige vector. It is well known that the vector p; converges to
the dominant eigenvector of AT with increasing k.
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ALGORITHM 4.1. Power Iteration Method: Dominant Eigenvector

Powerlteration (A, €):
1 k<0// iteration

2 po < 1€R"// initial vector

3 repeat

4 k<—k+1

5 pe < ATpi1 // eigenvector estimate

6 i < argmax;{p[j]} // maximum value index
7 A < pli]/pi-1li] // eigenvalue estimate

3 Pr < ﬁpk // scale vector

9 until |px — pe1ll <€

10 b< mpk // normalize eigenvector

11 return p, A

Table 4.2. Power method via scaling

Po b1 D2 b3
1 1 0.5 1 0.67 1 0.75
1 2 1 1.5 1 1.33 1
1 21—>11 1.5 — 1 1.33 | — 1
1 1 0.5 0.5 0.33 0.67 0.5
1 2 1 1.5 1 1.33 1
A 2 1.5 1.33
P4 Ps Pe b7
1 0.67 1 0.67 1 0.69 1 0.68
1.5 1 1.5 1 1.44 1 1.46 1
1.5 | = 1 1.5 | — 1 144 | — 1 1.46 | — 1
0.75 0.5 0.67 0.44 0.67 0.46 0.69 0.47
1.5 1 1.5 1 1.44 1 1.46 1
1.5 1.5 1.444 1.462

The dominant eigenvector of AT and the corresponding eigenvalue can be

computed using the power iteration approach whose pseudo-code is shown in
Algorithm 4.1. The method starts with the vector pg, which can be initialized to the
vector (1,1,...,1)T e R”. In each iteration, we multiply on the left by AT, and scale
the intermediate p; vector by dividing it by the maximum entry p;[i] in p to prevent

numeric overflow. The ratio of the maximum entry in iteration k to that in k — 1, given

as A=

pli]
pr—1li]’

yields an estimate for the eigenvalue. The iterations continue until the

difference between successive eigenvector estimates falls below some threshold € > 0.
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2.25

2.00 +

1.75 +

150 + VQ_O\?Q—O—O—Q—O—O—O—O—O—( »=1.466

1.25 | | | 1 1 1 1
0 2 4 6 8 10 12 14 16

Figure 4.7. Convergence of the ratio to dominant eigenvalue.

Example 4.6. Consider the example shown in Figure 4.6. Starting with an initial
prestige vector po = (1,1,1,1, 1)T, in Table 4.2 we show several iterations of the
power method for computing the dominant eigenvector of AT. In each iteration we
obtain py = ATp,_;. For example,

p1=ATpy =

O = O O O
_ o = O O
O O O O
— O R = O
O O O = O
e e
I
[NORTI NOR NCRE

Before the next iteration, we scale p; by dividing each entry by the maximum value
in the vector, which is 2 in this case, to obtain

1 0.5

AP
pP1=5 =

2 1 0.5

2 1

As k becomes large, we get
pe = ATpro1 > Apis

which implies that the ratio of the maximum element of p; to that of p;_; should
approach A. The table shows this ratio for successive iterations. We can see in
Figure 4.7 that within 10 iterations the ratio converges to A = 1.466. The scaled
dominant eigenvector converges to

1.466
1.466
0.682
1.466

Pk



108 Graph Data

After normalizing it to be a unit vector, the dominant eigenvector is given as

0.356
0.521
p=|0.521
0.243
0.521

Thus, in terms of prestige, va, v3, and vs have the highest values, as all of them have
indegree 2 and are pointed to by nodes with the same incoming values of prestige.
On the other hand, although v; and v4 have the same indegree, v; is ranked higher,
because vs contributes its prestige to v, but vy gets its prestige only from v;.

PageRank

PageRank is a method for computing the prestige or centrality of nodes in the context
of Web search. The Web graph consists of pages (the nodes) connected by hyperlinks
(the edges). The method uses the so-called random surfing assumption that a person
surfing the Web randomly chooses one of the outgoing links from the current page,
or with some very small probability randomly jumps to any of the other pages in the
Web graph. The PageRank of a Web page is defined to be the probability of a random
web surfer landing at that page. Like prestige, the PageRank of a node v recursively
depends on the PageRank of other nodes that point to it.

Normalized Prestige We assume for the moment that each node u has outdegree at
least 1. We discuss later how to handle the case when a node has no outgoing edges.
Let od(u) = >, A(u,v) denote the outdegree of node u. Because a random surfer
can choose among any of its outgoing links, if there is a link from u to v, then the
probability of visiting v from u is - dl(u).

Starting from an initial probability or PageRank pg(u) for each node, such that

> powy=1

we can compute an updated PageRank vector for v as follows:

Au,
p(v)=Z Oilu(ul;) - p(u)

=> N@w.v)- pw)
=Y NT(w.u)- pu) (4.5)

where N is the normalized adjacency matrix of the graph, given as

oy
N(u,v) = { 24 if (u,v) €E
0 if(uv)¢E
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Across all nodes, we can express the PageRank vector as follows:

p'=N'p (4.6)
So far, the PageRank vector is essentially a normalized prestige vector.
Random Jumps In the random surfing approach, there is a small probability of
jumping from one node to any of the other nodes in the graph, even if they do not

have a link between them. In essence, one can think of the Web graph as a (virtual)
fully connected directed graph, with an adjacency matrix given as

1 1 1
Ar:]-nxn: .
11 1

Here 1,,, is the n x n matrix of all ones. For the random surfer matrix, the outdegree
of each node is od(u) = n, and the probability of jumping from u to any node v is
simply - dl(u) = % Thus, if one allows only random jumps from one node to another,

the PageRank can be computed analogously to Eq. (4.5):

A,
p(v) = Z% plu)

=) N, (u,v)- pu)

=Y N ,u)- pu)

where N, is the normalized adjacency matrix of the fully connected Web graph,
given as

11 1
n n n
11 1
n n n
Nr = = _Ar = 1n><n
n
11 1
n n n

Across all the nodes the random jump PageRank vector can be represented as

p'=N'p

PageRank The full PageRank is computed by assuming that with some small
probability, &, a random Web surfer jumps from the current node u to any other
random node v, and with probability 1 —« the user follows an existing link from u to
v. In other words, we combine the normalized prestige vector, and the random jump
vector, to obtain the final PageRank vector, as follows:

p=01-a)NTp —i—OlN;Fp
=(1-a)NT+aNT)p (4.7)
= MTp
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where M = (1 — «)N + aN, is the combined normalized adjacency matrix. The
PageRank vector can be computed in an iterative manner, starting with an initial
PageRank assignment pg, and updating it in each iteration using Eq. (4.7). One minor
problem arises if a node u does not have any outgoing edges, that is, when od (1) = 0.
Such a node acts like a sink for the normalized prestige score. Because there is no
outgoing edge from u, the only choice u has is to simply jump to another random
node. Thus, we need to make sure that if od(u) =0 then for the row corresponding to
u in M, denoted as M,,, we set « =1, that is,

M, ifodu)=>0

Mu =
217 if od(u) =0

where 1, is the n-dimensional vector of all ones. We can use the power iteration method
in Algorithm 4.1 to compute the dominant eigenvector of M™.

Example 4.7. Consider the graph in Figure 4.6. The normalized adjacency matrix is

given as
0 0 0 1 O
0 0 05 0 0.5
N=1]1 0 0 0 O
0 033 033 0 0.33
0 1 0 0 O

Because there are n = 5 nodes in the graph, the normalized random jump
adjacency matrix is given as

02 02 0.2 02 0.2
02 02 0.2 02 0.2
N,=102 02 02 02 02
02 02 0.2 02 0.2
02 02 0.2 02 0.2

Assuming that « = 0.1, the combined normalized adjacency matrix is given as

0.02 0.02 0.02 0.92 0.02
0.02 0.02 047 0.02 047
M=09N+0.IN,=]0.92 0.02 0.02 0.02 0.02
0.02 0.32 0.32 0.02 0.32
0.02 0.92 0.02 0.02 0.02

Computing the dominant eigenvector and eigenvalue of MT we obtain A =1 and

0.419
0.546
p=1]0.417
0.422
0.417

Node vy has the highest PageRank value.
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Hub and Authority Scores

Note that the PageRank of a node is independent of any query that a user may pose,
as it is a global value for a Web page. However, for a specific user query, a page
with a high global PageRank may not be that relevant. One would like to have a
query-specific notion of the PageRank or prestige of a page. The Hyperlink Induced
Topic Search (HITS) method is designed to do this. In fact, it computes two values
to judge the importance of a page. The authority score of a page is analogous to
PageRank or prestige, and it depends on how many “good” pages point to it. On the
other hand, the hub score of a page is based on how many “good” pages it points to.
In other words, a page with high authority has many hub pages pointing to it, and a
page with high hub score points to many pages that have high authority.

Given a user query the HITS method first uses standard search engines to retrieve
the set of relevant pages. It then expands this set to include any pages that point to
some page in the set, or any pages that are pointed to by some page in the set. Any
pages originating from the same host are eliminated. HITS is applied only on this
expanded query specific graph G.

We denote by a(u) the authority score and by A(u) the hub score of node u. The
authority score depends on the hub score and vice versa in the following manner:

a()=>_ AT(w,u) h(u)

u

h() =" A(v,u) - a(u)

In matrix notation, we obtain
a'=ATh
h'=Aa
In fact, we can rewrite the above recursively as follows:
ar = AT = AT (Aaor) = (AT A
hy = Aa1 = AATh 1) = (AADhy 4
In other words, as k — 0o, the authority score converges to the dominant eigenvector
of ATA, whereas the hub score converges to the dominant eigenvector of AAT. The
power iteration method can be used to compute the eigenvector in both cases. Starting
with an initial authority vector a = 1,, the vector of all ones, we can compute the
vector h = Aa. To prevent numeric overflows, we scale the vector by dividing by the

maximum element. Next, we can compute a =ATh, and scale it too, which completes
one iteration. This process is repeated until both a and h converge.

Example 4.8. For the graph in Figure 4.6, we can iteratively compute the authority
and hub score vectors, by starting with a = (1,1,1,1,1)T. In the first iteration,
we have

=

Il

>

o

Il
o O = OO
— = O O O
o = O = O
S O O O+
O = O = O
e e e

Il
W N



112 Graph Data

After scaling by dividing by the maximum value 3, we get

0.33

0.67

h'=10.33

1

0.33

Next we update a as follows:

0O 01 0 O 0.33 0.33
0O 0 0 1 1 0.67 1.33
a=ATW=]0 1 0 1 0]]033|=]|1.67
1 0 0 0 O 1 0.33
01 0 1 0 0.33 1.67

After scaling by dividing by the maximum value 1.67, we get

0.2
0.8

This sets the stage for the next iteration. The process continues until a and h converge
to the dominant eigenvectors of ATA and AAT, respectively, given as

0 0
0.46 0.58
a=]0.63 h=1] 0
0 0.79
0.63 0.21

From these scores, we conclude that vy has the highest hub score because it points
to three nodes — v2, v3, and vs — with good authority. On the other hand, both vg
and vs have high authority scores, as the two nodes vy and ve with the highest hub
scores point to them.

44 GRAPH MODELS

Surprisingly, many real-world networks exhibit certain common characteristics, even
though the underlying data can come from vastly different domains, such as social
networks, biological networks, telecommunication networks, and so on. A natural
question is to understand the underlying processes that might give rise to such
real-world networks. We consider several network measures that will allow us to
compare and contrast different graph models. Real-world networks are usually large
and sparse. By large we mean that the order or the number of nodes n is very large,
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and by sparse we mean that the graph size or number of edges m = O(n). The models
we study below make a similar assumption that the graphs are large and sparse.

Small-world Property

It has been observed that many real-world graphs exhibit the so-called small-world
property that there is a short path between any pair of nodes. We say that a graph
G exhibits small-world behavior if the average path length wuy, scales logarithmically
with the number of nodes in the graph, that is, if

ur, xlogn

where n is the number of nodes in the graph. A graph is said to have ultra-small-world
property if the average path length is much smaller than logn, that is, if uy, < logn.

Scale-free Property

In many real-world graphs it has been observed that the empirical degree distribution
f (k) exhibits a scale-free behavior captured by a power-law relationship with &, that
is, the probability that a node has degree k satisfies the condition

J (k) ock™ (4.8)

Intuitively, a power law indicates that the vast majority of nodes have very small
degrees, whereas there are a few “hub” nodes that have high degrees, that is, they
connect to or interact with lots of nodes. A power-law relationship leads to a scale-free
or scale invariant behavior because scaling the argument by some constant ¢ does not
change the proportionality. To see this, let us rewrite Eq.(4.8) as an equality by
introducing a proportionality constant o that does not depend on k, that is,

flk)=ak™ (4.9)

Then we have
f(ck) =a(ck)™ = (ac ")k k™7
Also, taking the logarithm on both sides of Eq. (4.9) gives

log f (k) =log(ak™)
or log f(k) = —ylogk +loga

which is the equation of a straight line in the log-log plot of k versus f(k), with —y
giving the slope of the line. Thus, the usual approach to check whether a graph has
scale-free behavior is to perform a least-square fit of the points (logk,log f (k)) to a
line, as illustrated in Figure 4.8a.

In practice, one of the problems with estimating the degree distribution for a graph
is the high level of noise for the higher degrees, where frequency counts are the lowest.
One approach to address the problem is to use the cumulative degree distribution
F (k), which tends to smooth out the noise. In particular, we use F¢(k) =1— F(k),
which gives the probability that a randomly chosen node has degree greater than k. If
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Figure 4.8. Degree distribution and its cumulative distribution.

f (k) ock™, and assuming that y > 1, we have

k oo o0
Filhy=1-F)=1-)_ f@)=Y fx)=> x7
0 k k
:/x_ydx: x 1
k

— k=D
k (y—D

-y +1

o k=D
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In other words, the log-log plot of F¢(k) versus k will also be a power law with slope
—(y — 1) as opposed to —y. Owing to the smoothing effect, plotting logk versus
log F¢(k) and observing the slope gives a better estimate of the power law, as illustrated
in Figure 4.8b.

Clustering Effect

Real-world graphs often also exhibit a clustering effect, that is, two nodes are more
likely to be connected if they share a common neighbor. The clustering effect is
captured by a high clustering coefficient for the graph G. Let C(k) denote the
average clustering coefficient for all nodes with degree k; then the clustering effect
also manifests itself as a power-law relationship between C(k) and k:

C(k) k™7

In other words, a log-log plot of k versus C(k) exhibits a straight line behavior with
negative slope —y. Intuitively, the power-law behavior indicates hierarchical clustering
of the nodes. That is, nodes that are sparsely connected (i.e., have smaller degrees)
are part of highly clustered areas (i.e., have higher average clustering coefficients).
Further, only a few hub nodes (with high degrees) connect these clustered areas (the
hub nodes have smaller clustering coefficients).

Example 4.9. Figure 4.8a plots the degree distribution for a graph of human protein
interactions, where each node is a protein and each edge indicates if the two incident
proteins interact experimentally. The graph has n = 9521 nodes and m = 37,060
edges. A linear relationship between logk and log f (k) is clearly visible, although
very small and very large degree values do not fit the linear trend. The best fit
line after ignoring the extremal degrees yields a value of y =2.15. The plot of logk
versus log F¢(k) makes the linear fit quite prominent. The slope obtained here is
—(y —1)=1.85, that is, y = 2.85. We can conclude that the graph exhibits scale-free
behavior (except at the degree extremes), with y somewhere between 2 and 3, as is
typical of many real-world graphs.

The diameter of the graph is d(G) = 14, which is very close to logy,n =
log,(9521) = 13.22. The network is thus small-world.

Figure 4.9 plots the average clustering coefficient as a function of degree. The
log-log plot has a very weak linear trend, as observed from the line of best fit
that gives a slope of —y = —0.55. We can conclude that the graph exhibits weak
hierarchical clustering behavior.

4.4.1 Erdos—Rényi Random Graph Model

The Erdés-Rényi (ER) model generates a random graph such that any of the possible
graphs with a fixed number of nodes and edges has equal probability of being chosen.

The ER model has two parameters: the number of nodes n and the number of
edges m. Let M denote the maximum number of edges possible among the n nodes,

that is,
M= n\ _ nn—1)
2 2
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Figure 4.9. Average clustering coefficient distribution.

The ER model specifies a collection of graphs G(n, m) with n nodes and m edges, such
that each graph G € G has equal probability of being selected:

1 M\
P =5 = ()
where (l\rf) is the number of possible graphs with m edges (with n nodes) corresponding
to the ways of choosing the m edges out of a total of M possible edges.

Let V={vy, vs,...,v,} denote the set of n nodes. The ER method chooses a random
graph G = (V,E) € G via a generative process. At each step, it randomly selects two
distinct vertices v;,v; € V, and adds an edge (v;,v;) to E, provided the edge is not
already in the graph G. The process is repeated until exactly m edges have been
added to the graph.

Let X be a random variable denoting the degree of a node for G € G. Let p denote
the probability of an edge in G, which can be computed as

_m_m__
PEMT @ " ni—1

Average Degree

For any given node in G its degree can be at most n — 1 (because we do not allow
loops). Because p is the probability of an edge for any node, the random variable X,
corresponding to the degree of a node, follows a binomial distribution with probability
of success p, given as

n—1

f(k)=P(X=k)=< r

>pk(1 _ p)nflfk
The average degree uy is then given as the expected value of X:

pa=E[X]=@m-1p
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We can also compute the variance of the degrees among the nodes by computing the
variance of X:

o; =var(X)=(n—1)p(l - p)

Degree Distribution
To obtain the degree distribution for large and sparse random graphs, we need to
derive an expression for f(k) = P(X =k) as n — 0o. Assuming that m = O(n), we
n(ninl)/Q = n(no—(;l;/Q = ﬁ — 0. In other words, we are interested in the
asymptotic behavior of the graphs as n — oo and p — 0.

Under these two trends, notice that the expected value and variance of X can be

rewritten as

can write p =

EX]=(n—1)p ~npasn— oo
var(X)=(n—1)p(l1—p) ~npasn—ocand p— 0
In other words, for large and sparse random graphs the expectation and variance of

X are the same:
E[X] =var(X) =np

and the binomial distribution can be approximated by a Poisson distribution with
parameter A, given as
e

k!

where A = np represents both the expected value and variance of the distribution.
Using Stirling’s approximation of the factorial k! ~ k*e /27 k we obtain

fk) =

e e e (re)

k = ~ =
F& k! ket \2mk /27 JkkF

In other words, we have

k) ocakk Tk
for « = Ae = npe. We conclude that large and sparse random graphs follow a Poisson
degree distribution, which does not exhibit a power-law relationship. Thus, in one
crucial respect, the ER random graph model is not adequate to describe real-world
scale-free graphs.

Clustering Coefficient
Let us consider a node v; in G with degree k. The clustering coefficient of v; is given

as
2]’)’[,‘

C(v) = k=1

where k = n; also denotes the number of nodes and m; denotes the number of edges in
the subgraph induced by neighbors of v;. However, because p is the probability of an
edge, the expected number of edges m; among the neighbors of v; is simply

_ pk(k—1)

2

i
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Thus, we obtain
UI- = — =
kk—1 P
In other words, the expected clustering coefficient across all nodes of all degrees is

uniform, and thus the overall clustering coefficient is also uniform:
1
C(G=-)> Cw)=
G)=- Z W)=p

Furthermore, for sparse graphs we have p — 0, which in turn implies that C(G) =
C(v;) = 0. Thus, large random graphs have no clustering effect whatsoever, which is
contrary to many real-world networks.

Diameter

We saw earlier that the expected degree of a node is py = A, which means that within
one hop from a given node, we can reach A other nodes. Because each of the neighbors
of the initial node also has average degree A, we can approximate the number of nodes
that are two hops away as A2. In general, at a coarse level of approximation (i.e.,
ignoring shared neighbors), we can estimate the number of nodes at a distance of
k hops away from a starting node v; as A*¥. However, because there are a total of n
distinct vertices in the graph, we have

t
Zkk =n
k=1

where ¢ denotes the maximum number of hops from v;. We have

t
Y
P r—1
Plugging into the expression above, we have

AM>~n or

tlogh ~logn which implies

Because the path length from a node to the farthest node is bounded by ¢, it follows
that the diameter of the graph is also bounded by that value, that is,

d(G) xlogn

assuming that the expected degree A is fixed. We can thus conclude that random
graphs satisfy at least one property of real-world graphs, namely that they exhibit
small-world behavior.

4.4.2 Watts—Strogatz Small-world Graph Model

The random graph model fails to exhibit a high clustering coefficient, but it is
small-world. The Watts—Strogatz (WS) model tries to explicitly model high local
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clustering by starting with a regular network in which each node is connected to
its k neighbors on the right and left, assuming that the initial n vertices are arranged
in a large circular backbone. Such a network will have a high clustering coefficient,
but will not be small-world. Surprisingly, adding a small amount of randomness in the
regular network by randomly rewiring some of the edges or by adding a small fraction
of random edges leads to the emergence of the small-world phenomena.

Figure 4.10. Watts—Strogatz regular graph: n=38, k=2.

The WS model starts with n nodes arranged in a circular layout, with each node
connected to its immediate left and right neighbors. The edges in the initial layout are
called backbone edges. Each node has edges to an additional k — 1 neighbors to the
left and right. Thus, the WS model starts with a regular graph of degree 2k, where
each node is connected to its k neighbors on the right and k neighbors on the left, as
illustrated in Figure 4.10.

Clustering Coefficient and Diameter of Regular Graph
Consider the subgraph G, induced by the 2k neighbors of a node v. The clustering
coefficient of v is given as

my

M,

Cv) = (4.10)
where m, is the actual number of edges, and M, is the maximum possible number of
edges, among the neighbors of v.

To compute m,, consider some node r; that is at a distance of i hops (with 1 <i <k)
from v to the right, considering only the backbone edges. The node r; has edges to k —i
of its immediate right neighbors (restricted to the right neighbors of v), and to k — 1 of
its left neighbors (all k left neighbors, excluding v). Owing to the symmetry about v, a
node /; that is at a distance of i backbone hops from v to the left has the same number
of edges. Thus, the degree of any node in G, that is i backbone hops away from v is
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given as

di=Gk-i)+k-1)=2%k—i—1

Because each edge contributes to the degree of its two incident nodes, summing the
degrees of all neighbors of v, we obtain

k
2mv=2<z2k—i—1)

i=1
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m, = 2k>—

k
ke
2

My = gk(k—l) (4.11)

On the other hand, the number of possible edges among the 2k neighbors of v is

given as
2k 2k(2k -1

Plugging the expressions for m, and M, into Eq. (4.10), the clustering coefficient of a
node v is given as

m, 3k—3

CO =L =2

As k increases, the clustering coefficient approaches % because C(G) = C(v) — % as
k — oo.

The WS regular graph thus has a high clustering coefficient. However, it does
not satisfy the small-world property. To see this, note that along the backbone, the
farthest node from v has a distance of at most § hops. Further, because each node is
connected to k neighbors on either side, one can reach the farthest node in at most
% hops. More precisely, the diameter of a regular WS graph is given as

4(Q) = (%] if n is even

(%] if n is odd
The regular graph has a diameter that scales linearly in the number of nodes, and
thus it is not small-world.

Random Perturbation of Regular Graph

Edge Rewiring Starting with the regular graph of degree 2k, the WS model perturbs
the regular structure by adding some randomness to the network. One approach is to
randomly rewire edges with probability r. That is, for each edge (u,v) in the graph,
with probability », replace v with another randomly chosen node avoiding loops and
duplicate edges. Because the WS regular graph has m = kn total edges, after rewiring,
rm of the edges are random, and (1 —r)m are regular.

Edge Shortcuts An alternative approach is that instead of rewiring edges, we add a
few shortcut edges between random pairs of nodes, as shown in Figure 4.11. The total
number of random shortcut edges added to the network is given as mr = knr, so that
r can be considered as the probability, per edge, of adding a shortcut edge. The total
number of edges in the graph is then simply m +mr = (14r)m = (1 4+ r)kn. Because
r €0, 1], the number of edges then lies in the range [kn, 2kn].

In either approach, if the probability r of rewiring or adding shortcut edges is
r =0, then we are left with the original regular graph, with high clustering coefficient,
but with no small-world property. On the other hand, if the rewiring or shortcut
probability r = 1, the regular structure is disrupted, and the graph approaches a
random graph, with little to no clustering effect, but with small-world property.
Surprisingly, introducing only a small amount of randomness leads to a significant
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Figure 4.11. Watts—Strogatz graph (n =20, k = 3): shortcut edges are shown dotted.

change in the regular network. As one can see in Figure 4.11, the presence of a few
long-range shortcuts reduces the diameter of the network significantly. That is, even
for a low value of r, the WS model retains most of the regular local clustering structure,
but at the same time becomes small-world.

Properties of Watts—Strogatz Graphs

Degree Distribution Let us consider the shortcut approach, which is easier to analyze.
In this approach, each vertex has degree at least 2k. In addition there are the shortcut
edges, which follow a binomial distribution. Each node can have n’ =n — 2k — 1
additional shortcut edges, so we take n’ as the number of independent trials to add
edges. Because a node has degree 2k, with shortcut edge probability of r, we expect
roughly 2kr shortcuts from that node, but the node can connect to at most n —2k —1
other nodes. Thus, we can take the probability of success as

2kr 2kr

— - = 4.12
n—2k—1 n ( )

p

Let X denote the random variable denoting the number of shortcuts for each node.
Then the probability of a node with j shortcut edges is given as

. . n . Wi
f(J)=P(X=J)=<j)p’(1—p) !
with E[X] =n'p = 2kr. The expected degree of each node in the network is therefore

2k + E[X]| = 2k + 2kr = 2k(1 +r)

It is clear that the degree distribution of the WS graph does not adhere to a power
law. Thus, such networks are not scale-free.
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Clustering Coefficient After the shortcut edges have been added, each node v has
expected degree 2k(14r), that is, it is on average connected to 2kr new neighbors, in
addition to the 2k original ones. The number of possible edges among v’s neighbors is
given as

_ 2k(1+r)2k(1+r)—1)
a 2

M, = +r)k(dkr +2k—1)

Because the regular WS graph remains intact even after adding shortcuts, the
neighbors of v retain all % initial edges, as given in Eq. (4.11). In addition, some
of the shortcut edges may link pairs of nodes among v’s neighbors. Let Y be the
random variable that denotes the number of shortcut edges present among the 2k (1+r)
neighbors of v; then Y follows a binomial distribution with probability of success p,
as given in Eq. (4.12). Thus, the expected number of shortcut edges is given as

E[Y|= pM,

Let m, be the random variable corresponding to the actual number of edges present
among v’s neighbors, whether regular or shortcut edges. The expected number of edges
among the neighbors of v is then given as

Ejm,|=E [L(k?_ D —I—Y:| = L(k?_ Dy o,

Because the binomial distribution is essentially concentrated around the mean, we can
now approximate the clustering coefficient by using the expected number of edges, as
follows:
Oy = E[m.] _ D 4 pM, _3k(—1) .
M, M, 2M,
_ 3(k—1) 2kr
 (L4r)(dkr +2(2k — 1)) + n—2k—1

using the value of p given in Eq. (4.12). For large graphs we have n — 00, so we can
drop the second term above, to obtain
3k—1) 3k —3

CO) = Gk 2@k =)~ k=2t or@kr 14— 1) (4.13)

As r — 0, the above expression becomes equivalent to Eq. (4.10). Thus, for small values
of r the clustering coefficient remains high.

Diameter Deriving an analytical expression for the diameter of the WS model with
random edge shortcuts is not easy. Instead we resort to an empirical study of the
behavior of WS graphs when a small number of random shortcuts are added. In
Example 4.10 we find that small values of shortcut edge probability r are enough to
reduce the diameter from O(n) to O(logn). The WS model thus leads to graphs that
are small-world and that also exhibit the clustering effect. However, the WS graphs
do not display a scale-free degree distribution.
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Figure 4.12. Watts-Strogatz model: diameter (circles) and clustering coefficient (triangles).

Example 4.10. Figure 4.12 shows a simulation of the WS model, for a graph with
n = 1000 vertices and k = 3. The x-axis shows different values of the probability r
of adding random shortcut edges. The diameter values are shown as circles using
the left y-axis, whereas the clustering values are shown as triangles using the right
y-axis. These values are the averages over 10 runs of the WS model. The solid line
gives the clustering coefficient from the analytical formula in Eq. (4.13), which is in
perfect agreement with the simulation values.
The initial regular graph has diameter

d(G) = [%W = [%W =167

and its clustering coefficient is given as

oy =—4=D _ 8 g5
22k—1) 10

We can observe that the diameter quickly reduces, even with very small edge addition
probability. For » = 0.005, the diameter is 61. For » = 0.1, the diameter shrinks to 11,
which is on the same scale as O(log,n) because log, 1000 ~ 10. On the other hand,
we can observe that clustering coefficient remains high. For r = 0.1, the clustering
coefficient is 0.48. Thus, the simulation study confirms that the addition of even
a small number of random shortcut edges reduces the diameter of the WS regular
graph from O(n) (large-world) to O(logn) (small-world). At the same time the graph
retains its local clustering property.
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4.4.3 Barabéasi—Albert Scale-free Model

The Barabdsi-Albert (BA) model tries to capture the scale-free degree distributions of
real-world graphs via a generative process that adds new nodes and edges at each time
step. Further, the edge growth is based on the concept of preferential attachment; that
is, edges from the new vertex are more likely to link to nodes with higher degrees.
For this reason the model is also known as the rich get richer approach. The BA
model mimics a dynamically growing graph by adding new vertices and edges at each
time-step t =1, 2,.... Let G, denote the graph at time ¢, and let n, denote the number
of nodes, and m, the number of edges in G;.

Initialization

The BA model starts at time-step # =0, with an initial graph Go with ng nodes and
mo edges. Each node in Gy should have degree at least 1; otherwise it will never be
chosen for preferential attachment. We will assume that each node has initial degree
2, being connected to its left and right neighbors in a circular layout. Thus my = ng.

Growth and Preferential Attachment
The BA model derives a new graph G411 from G; by adding exactly one new node
u and adding g <ng new edges from u to ¢ distinct nodes v; € G;, where node v; is
chosen with probability m;(v;) proportional to its degree in G;, given as
dj
i (vy) = 27

(4.14)
viEGt di

Because only one new vertex is added at each step, the number of nodes in G, is
given as
n,=no-+t

Further, because exactly ¢ new edges are added at each time-step, the number of edges
in G, is given as
m; =mgy+qt

Because the sum of the degrees is two times the number of edges in the graph, we
have

> dw) = 2m, =2(mo+qt)

UiEG[
We can thus rewrite Eq. (4.14) as

dj
)=—— 4.15
7D = Smg+ g1) (419)

As the network grows, owing to preferential attachment, one intuitively expects high
degree hubs to emerge.

Example 4.11. Figure 4.13 shows a graph generated according to the BA model, with
parameters ng = 3,9 = 2, and t = 12. Initially, at time r = 0, the graph has ng =3
vertices, namely {vg,v1,v2} (shown in gray), connected by mo = 3 edges (shown in
bold). At each time step r =1,...,12, vertex v,12 is added to the growing network
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Figure 4.13. Barabdsi-Albert graph (ng =3, q=2, t =12).

and is connected to g = 2 vertices chosen with a probability proportional to their
degree.

For example, at t = 1, vertex vs is added, with edges to v; and vs, chosen
according to the distribution

mo(v;)=1/3 for i =0,1,2

At r =2, vy is added. Using Eq. (4.15), nodes vo and v3 are preferentially chosen
according to the probability distribution

2
w1 (vo) = m1(v3) = 0= 0.2

71(v1) =11 (v2) = 0= 0.3

The final graph after t = 12 time-steps shows the emergence of some hub nodes, such
as vy (with degree 9) and vs (with degree 6).

Degree Distribution
We now study two different approaches to estimate the degree distribution for the BA
model, namely the discrete approach, and the continuous approach.

Discrete Approach The discrete approach is also called the master-equation method.
Let X, be a random variable denoting the degree of a node in G,, and let f;(k) denote
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the probability mass function for X,. That is, f;(k) is the degree distribution for the
graph G, at time-step t. Simply put, f;(k) is the fraction of nodes with degree k at
time ¢. Let n; denote the number of nodes and m, the number of edges in G,. Further,
let n;(k) denote the number of nodes with degree k in G,. Then we have

n; (k)

n;

Jilk) =

Because we are interested in large real-world graphs, as t — 0o, the number of
nodes and edges in G; can be approximated as

n,=no+1txt
(4.16)
m; =mo+qt > qt

Based on Eq. (4.14), at time-step ¢ + 1, the probability =, (k) that some node with
degree k in G, is chosen for preferential attachment can be written as
k-n, (k)
Zi i- ny (l)

Dividing the numerator and denominator by n,, we have

7, (k) =

k. meo ke f(k
(k) = e Ji (k)

Zii ol - Zii < fi (@)

ne

(4.17)

Note that the denominator is simply the expected value of X;, that is, the mean degree
in G;, because

E[X/| = pa(G) =) i fi(i) (4.18)

Note also that in any graph the average degree is given as

>o.di _2m; _2qt
n

wa(Gy) = ~— =2 (4.19)

¢ n; t
where we used Eq. (4.16), that is, m, = gt. Equating Eqgs. (4.18) and (4.19), we can
rewrite the preferential attachment probability [Eq. (4.17)] for a node of degree k as
k- fi(k)
2q

(k) = (4.20)

We now consider the change in the number of nodes with degree k, when a new
vertex u joins the growing network at time-step ¢ 4+ 1. The net change in the number
of nodes with degree k is given as the number of nodes with degree k at time ¢ + 1
minus the number of nodes with degree k at time ¢, given as

(ne+1) - fry1(k) —n; - fi (k)
Using the approximation that n, >~ from Eq. (4.16), the net change in degree k nodes is
(ne+1) - fryr (k) —n, - fi(k) = @+ 1) - frsa (k) —1- fi (k) (4.21)

The number of nodes with degree k increases whenever u connects to a vertex v;
of degree k — 1 in G;, as in this case v; will have degree k in G,;1. Over the ¢ edges
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added at time 7+ 1, the number of nodes with degree k — 1 in G, that are chosen to
connect to u is given as
g-k=1-fitk=1 1

gk —1) = —— (k=D filk—1) (4.22)
2¢q 2

where we use Eq. (4.20) for 7,(k —1). Note that Eq. (4.22) holds only when k > g. This
is because v; must have degree at least ¢, as each node that is added at time 7 > 1
has initial degree g. Therefore, if d; =k — 1, then k — 1 > ¢ implies that k > g (we
can also ensure that the initial ny edges have degree g by starting with clique of size
ngp=gq+ 1)

At the same time, the number of nodes with degree k decreases whenever u
connects to a vertex v; with degree k in G,, as in this case v; will have a degree
k+1 in G,;;1. Using Eq. (4.20), over the g edges added at time ¢+ 1, the number of
nodes with degree k in G, that are chosen to connect to u is given as

gk filk) 1

gomk) =" 5k k) (4.23)

Based on the preceding discussion, when k > ¢, the net change in the number of
nodes with degree k is given as the difference between Egs. (4.22) and (4.23) in G;:

1 1
q-mk—1)—q-mk)=g-(k=1-fitk=1) = gk- fik) (4.24)

Equating Eqs. (4.21) and (4.24) we obtain the master equation for k > g:

1 1
C+D-frn®) =t filk) =5 - (k=1 filk =1) = 5 -k f1 (k) (4.25)

On the other hand, when k = ¢, assuming that there are no nodes in the graph
with degree less than ¢, then only the newly added node contributes to an increase in
the number of nodes with degree k = ¢ by one. However, if u connects to an existing
node v; with degree k, then there will be a decrease in the number of degree k nodes
because in this case v; will have degree k + 1 in G;;1. The net change in the number
of nodes with degree k is therefore given as

l—q-n,(k)zl—%-k-ft(k) (4.26)

Equating Eqs. (4.21) and (4.26) we obtain the master equation for the boundary
condition k = g:

1
C+D-frin®) =1 filk) =1 =5k fi(k) (4.27)

Our goal is now to obtain the stationary or time-invariant solutions for the master
equations. In other words, we study the solution when

frn®) = f,(k) = f(k) (4.28)

The stationary solution gives the degree distribution that is independent of time.
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Let us first derive the stationary solution for k = ¢. Substituting Eq. (4.28) into
Eq. (4.27) and setting k = ¢, we obtain

1
t+1-flg)—t-flg)=1=59-f(q)

2f(g)=2—gq- f(g), which implies that

2
f@)= ) (4.29)

The stationary solution for k > g gives us a recursion for f (k) in terms of f(k—1):

1 1
(t+1)'f(k)—l-f(k)=§'(k—l)'f(k—l)—g'k'f(k)
2f(k)=(k—1)- f(k—1)—k- f(k), which implies that

k) = k—1 k—1 4.30
f<>_(k—+2)-f<—> (4:30)

Expanding (4.30) until the boundary condition k = g yields

“hry TETY

(k=1 (k—2)
T (k+2)(k+1)

Q)

flk=2)

_ k= DE=2)(k =3k =1 (g +3) g+ D@+ D)
k+2)k+D(K)k—1)- (g +6)(@+5)(q+4)(q+3)

_(@+2)(g+1)g

= kit 1@

f(@)

Plugging in the stationary solution for f(g) from Eq.(4.29) gives the general
solution

_lg+2@+lg 2 29+
(k+2)(k+Dk (q+2) k(k+1)(k+2)

J (&)
For constant ¢ and large k, it is easy to see that the degree distribution scales as
[l ock™ (4.31)

In other words, the BA model yields a power-law degree distribution with y = 3,
especially for large degrees.

Continuous Approach The continuous approach is also called the mean-field method.
In the BA model, the vertices that are added early on tend to have a higher degree,
because they have more chances to acquire connections from the vertices that are
added to the network at a later time. The time dependence of the degree of a vertex
can be approximated as a continuous random variable. Let k; = d, (i) denote the degree
of vertex v; at time ¢. At time ¢, the probability that the newly added node u links to
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v; is given as m,(i). Further, the change in v;’s degree per time-step is given as ¢ -, (7).
Using the approximation that n, >~ ¢ and m, >~ gt from Eq. (4.16), the rate of change
of k; with time can be written as

dki () ki ki
- = 77 (1) = . p—
ar T 90 "
Rearranging the terms in the preceding equation % = % and integrating on both

sides, we have

1
/ Lk, = / L
k; 2t
1
Ink; = 3 Int+C

. 1/2 C
e™hi = " 6C " which implies

ki=a-t'? (4.32)

where C is the constant of integration, and thus « = e® is also a constant.

Let #; denote the time when node i was added to the network. Because the initial

degree for any node is g, we obtain the boundary condition that k; = ¢ at time ¢t =1;.
Plugging these into Eq. (4.32), we get

ki=a-1}?

a=1 (4.33)

N

= ¢, which implies that

Substituting Eq. (4.33) into Eq. (4.32) leads to the particular solution

ki=a-t=q-\/t/t; (4.34)

Intuitively, this solution confirms the rich-gets-richer phenomenon. It suggests that if
a node v; is added early to the network (i.e., #; is small), then as time progresses (i.e.,
t gets larger), the degree of v; keeps on increasing (as a square root of the time 1).

Let us now consider the probability that the degree of v; at time ¢ is less than
some value k, i.e., P(k; < k). Note that if k; < k, then by Eq. (4.34), we have

ki<k

t
L=<k
97 <

t Ok o
— < —, which implies that
tq?
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Thus, we can write

q’t q’t
P(k,<k)=P ti>k—2 =1-P tl§k2

In other words, the probability that node v; has degree less than k is the same as the
probability that the time # at which v; enters the graph is greater than 4 = t which in

turn can be expressed as 1 minus the probability that ¢ is less than or equal to ZQ t.
Note that vert1ces are added to the graph at a uniform rate of one vertex per
time-step, that is, E 1 . Thus, the probability that # is less than or equal to a2 is

k2
given as
2
Pki<k)=1—P 5‘2—>
2r 1
—1_41t 2
k2t
2
1=
k2

Because v; is any generic node in the graph, P(k; < k) can be considered to be the
cumulative degree distribution F;(k) at time . We can obtain the degree distribution
f; (k) by taking the derivative of F;(k) with respect to k to obtain

Jilk) = Ft(k) d xPki<hb

ock™3 (4.35)

In Eq. (4.35) we made use of the quotient rule for computing the derivative of the
quotient f(k) = igg, given as

dftk) _hk)- de®) _ g (k) - dhtty
dk h(k)2

Here g(k) = ¢? and h(k) =k?, and %¥ =0 and 48 =2k,

Note that the degree distribution from the continuous approach, given in
Eq. (4.35), is very close to that obtained from the discrete approach given in
Eq. (4.31). Both solutions confirm that the degree distribution is proportional to k=3,
which gives the power-law behavior with y = 3.
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Clustering Coefficient and Diameter
Closed form solutions for the clustering coefficient and diameter for the BA model are
difficult to derive. It has been shown that the diameter of BA graphs scales as

1
dG) =0 28"
loglogn,

suggesting that they exhibit ultra-small-world behavior, when g > 1. Further, the
expected clustering coefficient of the BA graphs scales as

t

2
E[C(G)] =0 ((log—"))

which is only slightly better than the clustering coefficient for random graphs, which
scale as O(n;1). In Example 4.12, we empirically study the clustering coefficient and
diameter for random instances of the BA model with a given set of parameters.

Example 4.12. Figure 4.14 plots the empirical degree distribution obtained as the
average of 10 different BA graphs generated with the parameters no =3, ¢ = 3, and
for t =997 time-steps, so that the final graph has n = 1000 vertices. The slope of the
line in the log-log scale confirms the existence of a power law, with the slope given
as —y = —2.64.

The average clustering coefficient over the 10 graphs was C(G) = 0.019, which is
not very high, indicating that the BA model does not capture the clustering effect.
On the other hand, the average diameter was d(G) = 6, indicating ultra-small-world
behavior.

—10 A

Probability: log, f (k)
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Figure 4.14. Barabdsi—-Albert model (ng =3,t =997, q = 3): degree distribution.
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4.5 FURTHER READING

The theory of random graphs was founded in Erdés and Rényi (1959); for a detailed
treatment of the topic see Bollobas (2001). Alternative graph models for real-world
networks were proposed in Watts and Strogatz (1998) and Barabdasi and Albert (1999).
One of the first comprehensive books on graph data analysis was Wasserman and
Faust (1994). More recent books on network science Lewis (2009) and Newman (2010).
For PageRank see Brin and Page (1998), and for the hubs and authorities approach
see Kleinberg (1999). For an up-to-date treatment of the patterns, laws, and models
(including the RMat generator) for real-world networks, see Chakrabarti and Faloutsos
(2012).
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4.6 EXERCISES

Q1. Given the graph in Figure 4.15, find the fixed-point of the prestige vector.

-0

Figure 4.15. Graph for Q1

Q2. Given the graph in Figure 4.16, find the fixed-point of the authority and hub vectors.
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Figure 4.16. Graph for Q2.

Q3. Consider the double star graph given in Figure 4.17 with n nodes, where only nodes
1 and 2 are connected to all other vertices, and there are no other links. Answer the
following questions (treating n as a variable).

(a) What is the degree distribution for this graph?

b) What is the mean degree?

(c) What is the clustering coefficient for vertex 1 and vertex 37

(d) What is the clustering coefficient C(G) for the entire graph? What happens to the

clustering coefficient as n — 00?

What is the transitivity T(G) for the graph? What happens to T(G) and n — co?

What is the average path length for the graph?

—~

What is the betweenness value for node 17
What is the degree variance for the graph?

Figure 4.17. Graph for Q3.

Q4. Consider the graph in Figure 4.18. Compute the hub and authority score vectors. Which
nodes are the hubs and which are the authorities?

(D=
Figure 4.18. Graph for Q4.

Q5. Prove that in the BA model at time-step t + 1, the probability m;(k) that some node
with degree k in Gy is chosen for preferential attachment is given as

k-n; (k)

O TEG
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Before we can mine data, it is important to first find a suitable data representation
that facilitates data analysis. For example, for complex data such as text, sequences,
images, and so on, we must typically extract or construct a set of attributes or
features, so that we can represent the data instances as multivariate vectors. That
is, given a data instance x (e.g., a sequence), we need to find a mapping ¢, so that
¢(x) is the vector representation of x. Even when the input data is a numeric data
matrix, if we wish to discover nonlinear relationships among the attributes, then a
nonlinear mapping ¢ may be used, so that ¢ (x) represents a vector in the corresponding
high-dimensional space comprising nonlinear attributes. We use the term input space
to refer to the data space for the input data x and feature space to refer to the space
of mapped vectors ¢ (x). Thus, given a set of data objects or instances x;, and given
a mapping function ¢, we can transform them into feature vectors ¢ (x;), which then
allows us to analyze complex data instances via numeric analysis methods.

Example 5.1 (Sequence-based Features). Consider a dataset of DNA sequences over
the alphabet X ={A, C, G, T}. One simple feature space is to represent each sequence
in terms of the probability distribution over symbols in X. That is, given a sequence
x with length |x| =m, the mapping into feature space is given as

¢(x) ={P(A), P(C), P(G), P(T)}

where P(s) =%* is the probability of observing symbol s € X, and n; is the number
of times s appears in sequence x. Here the input space is the set of sequences X*,
and the feature space is R%. For example, if x = ACAGCAGTA, with m = |x| =9,
since A occurs four times, C and G occur twice, and T occurs once, we have

¢ (x)=1(4/9,2/9,2/9,1/9) = (0.44,0.22,0.22,0.11)
Likewise, for another sequence y = AGCAAGCGAG, we have
¢(y) = (4/10,2/10,4/10,0) = (0.4,0.2,0.4,0)

The mapping ¢ now allows one to compute statistics over the data sample to
make inferences about the population. For example, we may compute the mean

135
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symbol composition. We can also define the distance between any two sequences,
for example,

3xy) =llox) —dWl
=/(0.44—0.4)2+ (0.22— 0.2)2+ (0.22 — 0.4)2+ (0.11 — 0)2 = 0.22

We can compute larger feature spaces by considering, for example, the probability
distribution over all substrings or words of size up to k over the alphabet X, and so on.

Example 5.2 (Nonlinear Features). As an example of a nonlinear mapping consider
the mapping ¢ that takes as input a vector x = (x1,x2)" € R? and maps it to a
“quadratic” feature space via the nonlinear mapping

¢(x) = (x2,x2,/2x1x2)T € R®
For example, the point x = (5.9,3)" is mapped to the vector
d(x) = (5.9%,3%,4/2-5.9-3)T = (34.81,9,25.03)"

The main benefit of this transformation is that we may apply well-known linear
analysis methods in the feature space. However, because the features are nonlinear
combinations of the original attributes, this allows us to mine nonlinear patterns
and relationships.

Whereas mapping into feature space allows one to analyze the data via
algebraic and probabilistic modeling, the resulting feature space is usually very
high-dimensional; it may even be infinite dimensional. Thus, transforming all the
input points into feature space can be very expensive, or even impossible. Because the
dimensionality is high, we also run into the curse of dimensionality highlighted later
in Chapter 6.

Kernel methods avoid explicitly transforming each point x in the input space into
the mapped point ¢ (x) in the feature space. Instead, the input objects are represented
via their n x n pairwise similarity values. The similarity function, called a kernel, is
chosen so that it represents a dot product in some high-dimensional feature space, yet
it can be computed without directly constructing ¢ (x). Let Z denote the input space,
which can comprise any arbitrary set of objects, and let D = {x;}!_; CZ be a dataset
comprising n objects in the input space. We can represent the pairwise similarity
values between points in D via the n x n kernel matrix, defined as

K(xi,x1) K(xi,x2) - K(x1,%x,)
K(x2,x1) K(x2,x2) - K(x2,x,)
K(Xn,Xl) K(Xn,Xg) K(an Xn)

where K:Z x 7 — R is a kernel function on any two points in input space. However,
we require that K corresponds to a dot product in some feature space. That is, for
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any x;,x; € Z, the kernel function should satisfy the condition
K(xi.x)) = ¢ ()" p(x)) (5.1)

where ¢: Z — F is a mapping from the input space Z to the feature space F. Intuitively,
this means that we should be able to compute the value of the dot product using
the original input representation x, without having recourse to the mapping ¢ (x).
Obviously, not just any arbitrary function can be used as a kernel; a valid kernel
function must satisfy certain conditions so that Eq. (5.1) remains valid, as discussed
in Section 5.1.

It is important to remark that the transpose operator for the dot product applies
only when F is a vector space. When F is an abstract vector space with an inner
product, the kernel is written as K(x;,x;) = (¢(x;), ¢(x;)). However, for convenience
we use the transpose operator throughout this chapter; when F is an inner product
space it should be understood that

P P(x)) = (D (x), P (x))

Example 5.3 (Linear and Quadratic Kernels). Consider the identity —mapping,
¢ (x) — x. This naturally leads to the linear kernel, which is simply the dot product
between two input vectors, and thus satisfies Eq. (5.1):

P o(y) =x"y =K(x,y)

For example, consider the first five points from the two-dimensional Iris dataset
shown in Figure 5.1a:

am (3 w=(09) 0= (8 x=(M) w=(2)

The kernel matrix for the linear kernel is shown in Figure 5.1b. For example,

K(x1,X2) = X1 X2 = 5.9 x 6.94 3 x 3.1=40.71+ 9.3 = 50.01

X2
OX4 - X9 K X1 Xo X3 X4 X5
3.0 4+ o 783 o x1 | 43.81 50.01 47.64 36.74 42.00
Xo | 50.01 57.22 54.53 41.66 48.22
2.5 + s x3 | 47.64 54.53 51.97 39.64 45.98
o x4 | 36.74 41.66 39.64 31.40 34.64
2 i i i i X1 X5 | 42.00 48.22 45.98 34.64 40.84

45 50 55 6.0 6.5
(a) (b)

Figure 5.1. (a) Example points. (b) Linear kernel matrix.
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Consider the quadratic mapping ¢ : R?> — R? from Example 5.2, that maps
x = (x1,x2)T as follows:

$(x) = (x7,x3, V2x1x2)"
The dot product between the mapping for two input points x,y € R? is given as

¢ o (y) =xZy? +x3y3 + 2x1y1x2)2

We can rearrange the preceding to obtain the (homogeneous) quadratic kernel
function as follows:

¢ ) TP (y) = xy? +x2y3 +2x1y1X22
= (x1y1 + X2y2)?
=(x"y)?
=K(x,y)

We can thus see that the dot product in feature space can be computed by evaluating
the kernel in input space, without explicitly mapping the points into feature space.
For example, we have

d(x1) =(5.9%,3%,v/2-5.9-3)T = (34.81,9,25.03)T

b(x2) = (6.9%,3.12,/2-6.9-3.1)T = (47.61,9.61, 30.25) T
& (x1) T (x0) = 34.81 x 47.61 + 9 x 9.61 + 25.03 x 30.25 = 2501

We can verify that the homogeneous quadratic kernel gives the same value

K(x1,x2) = (] x2)? = (50.01)% = 2501

We shall see that many data mining methods can be kernelized, that is, instead of
mapping the input points into feature space, the data can be represented via the n x n
kernel matrix K, and all relevant analysis can be performed over K. This is usually
done via the so-called kernel trick, that is, show that the analysis task requires only
dot products ¢(x,-)T¢(xj) in feature space, which can be replaced by the corresponding
kernel K(x;,x;) = o) o (x;) that can be computed efficiently in input space. Once
the kernel matrix has been computed, we no longer even need the input points x;, as
all operations involving only dot products in the feature space can be performed over
the n x n kernel matrix K. An immediate consequence is that when the input data
is the typical n x d numeric matrix D and we employ the linear kernel, the results
obtained by analyzing K are equivalent to those obtained by analyzing D (as long
as only dot products are involved in the analysis). Of course, kernel methods allow
much more flexibility, as we can just as easily perform non-linear analysis by employing
nonlinear kernels, or we may analyze (non-numeric) complex objects without explicitly
constructing the mapping ¢ (x).
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Example 5.4. Consider the five points from Example 5.3 along with the linear kernel
matrix shown in Figure 5.1. The mean of the five points in feature space is simply
the mean in input space, as ¢ is the identity function for the linear kernel:

5 5
po= ¢(x)=) x;=(6.00,2.88)"

i=1 i=1
Now consider the squared magnitude of the mean in feature space:
|y |” = mT by = (6.02 +2.88%) = 44.29

Because this involves only a dot product in feature space, the squared magnitude
can be computed directly from K. As we shall see later [see Eq. (5.12)] the squared
norm of the mean vector in feature space is equivalent to the average value of the
kernel matrix K. For the kernel matrix in Figure 5.1b we have

5 5
1 1107.36
= ,-§=1 ?:1 K(xi, %)) = —-— =44.29

which matches the H gy H2 value computed earlier. This example illustrates that
operations involving dot products in feature space can be cast as operations over
the kernel matrix K.

Kernel methods offer a radically different view of the data. Instead of thinking of
the data as vectors in input or feature space, we consider only the kernel values between
pairs of points. The kernel matrix can also be considered as a weighted adjacency
matrix for the complete graph over the n input points, and consequently there is a
strong connection between kernels and graph analysis, in particular algebraic graph
theory.

5.1 KERNEL MATRIX

Let Z denote the input space, which can be any arbitrary set of data objects, and let
D = {x1,x2,...,%x,} CZ denote a subset of n objects in the input space. Let ¢:Z — F
be a mapping from the input space into the feature space F, which is endowed with
a dot product and norm. Let K: Z x Z — R be a function that maps pairs of input
objects to their dot product value in feature space, that is, K(x;,x;) = o x)TP (%),
and let K be the n x n kernel matrix corresponding to the subset D.

The function K is called a positive semidefinite kernel if and only if it is symmetric:

Kxi,xj) = K(x;,%;)

and the corresponding kernel matrix K for any subset D C 7 is positive semidefinite,
that is,

aTKa> 0, for all vectors a € R"
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which implies that

ZZaiajK(X,-,Xj) >0, for all ¢; e R,i €[1,n] (5.2)

i=1 j=1

We first verify that if K(x;,x;) represents the dot product ¢ (x;)T¢(x;) in some
feature space, then K is a positive semidefinite kernel. Consider any dataset D, and
let K = {K(x;,%;)} be the corresponding kernel matrix. First, K is symmetric since
the dot product is symmetric, which also implies that K is symmetric. Second, K is
positive semidefinite because

n

aTKa= Z i:aiajK(Xia X))

i=1 j=1

=YY aiap(x)"p(x)

i=1 j=1
n T n

= (Za,-qs(x,-)) Y ajp(x;)
i=1 j=1

2
>0

Y aip(x)
i=1

Thus, K is a positive semidefinite kernel.
We now show that if we are given a positive semidefinite kernel K: Z x Z — R,
then it corresponds to a dot product in some feature space F.

5.1.1 Reproducing Kernel Map

For the reproducing kernel map ¢, we map each point x € Z into a function in a
functional space {f:Z — R} comprising functions that map points in Z into R.
Algebraically this space of functions is an abstract vector space where each point
happens to be a function. In particular, any x € Z in the input space is mapped to the
following function:

¢(x) =K(x, )

where the - stands for any argument in Z. That is, each object x in the input space
gets mapped to a feature point ¢ (x), which is in fact a function K(x, -) that represents
its similarity to all other points in the input space Z.

Let F be the set of all functions or points that can be obtained as a linear
combination of any subset of feature points, defined as

F= span{K(x, Jlxe I}

- if: £6) :ia; K(x, ) ‘m eN,a; € R, (x1,....%n) gz}
i=1

We use the dual notation f and f(-) interchangeably to emphasize the fact that each
point f in the feature space is in fact a function f(-). Note that by definition the
feature point ¢ (x) = K(x, -) belongs to F.
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Let f, g € F be any two points in feature space:

mq mp
f=f()=> oK) g=8()=) B K
i=1 j=1

Define the dot product between two points as

mg mp

ffe=fr(Te()=Y Y aifKxi.x) (5.3)

i=1 j=1

We emphasize that the notation fTg is only a convenience; it denotes the inner product
(f, g) because F is an abstract vector space, with an inner product as defined above.

We can verify that the dot product is bilinear, that is, linear in both arguments,
because

mqg Mp mq mp
fTg=>"> i g Kxi.x) =Y i gx) =D _pj f(x;)
i=1 j=1 i=1 j=1
The fact that K is positive semidefinite implies that
12 =T =) "> o K(xi,%) = 0
i=1 j=1

Thus, the space F is a pre-Hilbert space, defined as a normed inner product space,
because it is endowed with a symmetric bilinear dot product and a norm. By adding
the limit points of all Cauchy sequences that are convergent, F can be turned into
a Hilbert space, defined as a normed inner product space that is complete. However,
showing this is beyond the scope of this chapter.

The space F has the so-called reproducing property, that is, we can evaluate a
function f(-) =f at a point x € Z by taking the dot product of f with ¢(x), that is,

o) = fOTKEx ) =) o K(x:,%) = f(x)
i=1
For this reason, the space F is also called a reproducing kernel Hilbert space.
All we have to do now is to show that K(x;, x;) corresponds to a dot product in the
feature space F. This is indeed the case, because using Eq. (5.3) for any two feature
points ¢(x;), ¢ (x;) € F their dot product is given as

o) P (x)) = K(xi, ) TK(x;, ) = K(xi, %))

The reproducing kernel map shows that any positive semidefinite kernel
corresponds to a dot product in some feature space. This means we can apply well
known algebraic and geometric methods to understand and analyze the data in these
spaces.

Empirical Kernel Map
The reproducing kernel map ¢ maps the input space into a potentially infinite
dimensional feature space. However, given a dataset D = {x;}_;, we can obtain a
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finite dimensional mapping by evaluating the kernel only on points in D. That is,
define the map ¢ as follows:

T
b(x) = ((K(xl,x),K(xz,x),...,K(Xn,x)) cR"

which maps each point x € Z to the n-dimensional vector comprising the kernel values
of x with each of the objects x; € D. We can define the dot product in feature space as

) TP (x) = Kix x)K(xi, %) = K['K; (5.4)
k=1
where K; denotes the ith column of K, which is also the same as the ith row of K
(considered as a column vector), as K is symmetric. However, for ¢ to be a valid map,
we require that ¢ (x;)T¢ (x;) = K(x;,%;), which is clearly not satisfied by Eq. (5.4). One
solution is to replace KFK; in Eq. (5.4) with KTAK; for some positive semidefinite
matrix A such that
KFAKJ = K(X,‘, Xj)
If we can find such an A, it would imply that over all pairs of mapped points we have
[krak,|” = {Kes x|
i,j=
which can be written compactly as
KAK=K

ij=1

This immediately suggests that we take A = K, the (pseudo) inverse of the kernel
matrix K. The modified map ¢, called the empirical kernel map, is then defined as

p(x) =K V2. ((K(xl,x),K(XQ,X),...,K(x,,,x))T cR"

so that the dot product yields

P = (KK, (K2 K))
— K;F ( —1/2K—1/2) Kj
=K K 'K;

Over all pairs of mapped points, we have

K'K'K; ) =KK'K=K

n
ij
as desired. However, it is important to note that this empirical feature representation

is valid only for the n points in D. If points are added to or removed from D, the kernel
map will have to be updated for all points.

5.1.2 Mercer Kernel Map

In general different feature spaces can be constructed for the same kernel K. We now
describe how to construct the Mercer map.
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Data-specific Kernel Map

The Mercer kernel map is best understood starting from the kernel matrix for the
dataset D in input space. Because K is a symmetric positive semidefinite matrix, it
has real and non-negative eigenvalues, and it can be decomposed as follows:

K=TUAUT
where U is the orthonormal matrix of eigenvectors w; = (ui1,uia, ..., uin)T € R"
(for i =1,...,n), and A is the diagonal matrix of eigenvalues, with both arranged

in non-increasing order of the eigenvalues A1 > Ay >...> X, > 0:

A 0 e
| | 0 Ay - O

U= u uz -+ Uy, A= . . .
| | | . . . .

0 0 - A,

The kernel matrix K can therefore be rewritten as the spectral sum
K= AlululT + )»2112112T 4+ 4 )\,,u,,unT
In particular the kernel function between x; and x; is given as

K, x5) = A1 ug urj+ Ao ugi gj--- Ay Up; Up;

= Z)\,k Uki Ukj (55)
k=1

where u;; denotes the ith component of eigenvector uy. It follows that if we define the
Mercer map ¢ as follows:

T
¢(Xi)=(\/Euli,\/gum,---,\/rnun;) (5.6)

then K(x;,x;) is a dot product in feature space between the mapped points ¢ (x;) and
¢ (x;) because

o) P (x;) = (\/E ul\/)Tu) (\/E ulj,...,\/fnun,)T

=Arugurj Ay uy uyy = K(xg,x5)

Noting that U; = (w1, 4, ..., un) T is the ith row of U, we can rewrite the Mercer map

¢ as
¢ (x;)) = VAU; (5.7)

Thus, the kernel value is simply the dot product between scaled rows of U:
T
) o (x) = (VAU;) (VAU;) = U AU,

The Mercer map, defined equivalently in Egs. (5.6) and (5.7), is obviously restricted
to the input dataset D, just like the empirical kernel map, and is therefore called
the data-specific Mercer kernel map. It defines a data-specific feature space of
dimensionality at most n, comprising the eigenvectors of K.
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Example 5.5. Let the input dataset comprise the five points shown in Figure 5.1a,
and let the corresponding kernel matrix be as shown in Figure 5.1b. Computing the
eigen-decomposition of K, we obtain A; = 223.95, Ao =1.29, and A3 =1y = A5 = 0.
The effective dimensionality of the feature space is 2, comprising the eigenvectors uy
and uy. Thus, the matrix U is given as follows:

( W w)
U, —0.442 0.163
U= U, —0.505 —0.134
Us —0.482 —0.181
Uy —-0.369  0.813
Us —0.425 —-0.512

and we have
22395 0 — /223.95 0 14.965 0
A = A = =
0 1.29 0 V1.29 0 1.135

The kernel map is specified via Eq. (5.7). For example, for x; = (5.9,3)T and
xo = (6.9,3.1)T we have

¢ () = VAU, = (14965 0 > (—0.442) _ (—6.616)

0o 1135\ 0.163 0.185
14.965 0 ) [(—0.505\ (—7.563
#(xz) = VAU = < 0 1.135) <—o.134) - <—o.153>

Their dot product is given as

(x1)Tp(x2) = 6.616 x 7.563 — 0.185 x 0.153
= 50.038 — 0.028 = 50.01

which matches the kernel value K(x1,x2) in Figure 5.1b.

Mercer Kernel Map
For compact continuous spaces, analogous to the discrete case in Eq. (5.5), the kernel
value between any two points can be written as the infinite spectral decomposition

K, %) = Z)»k W (%) we ()

k=1
where {A1,X2,...} is the infinite set of eigenvalues, and {u1(~),u2(-),...} is the

corresponding set of orthogonal and normalized eigenfunctions, that is, each function
u;(+) is a solution to the integral equation

/K(X, y)ui(y) dy = A (x)
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and K is a continuous positive semidefinite kernel, that is, for all functions a(-) with
a finite square integral (i.e., fa(x)2 dx < 0) K satisfies the condition

//K(Xl,)@) a(xy) a(xz) dx; dxo >0

We can see that this positive semidefinite kernel for compact continuous spaces is
analogous to the the discrete kernel in Eq. (5.2). Further, similarly to the data-specific
Mercer map [Eq. (5.6)], the general Mercer kernel map is given as

T
9 (x) = (Vir w G, Vi ua ), ..

with the kernel value being equivalent to the dot product between two mapped points:

K(xi, %) = ¢ (x) T (x))

5.2 VECTOR KERNELS

We now consider two of the most commonly used vector kernels in practice. Kernels
that map an (input) vector space into another (feature) vector space are called
vector kernels. For multivariate input data, the input vector space will be the
d-dimensional real space RY. Let D comprise n input points x; e R¢, fori =1,2,...,n.
Commonly used (nonlinear) kernel functions over vector data include the polynomial
and Gaussian kernels, as described next.

Polynomial Kernel
Polynomial kernels are of two types: homogeneous or inhomogeneous. Let x,y € R?.
The homogeneous polynomial kernel is defined as

K, (x,y) =) o) = xTy)? (5.8)

where ¢ is the degree of the polynomial. This kernel corresponds to a feature space
spanned by all products of exactly ¢ attributes.

The most typical cases are the linear (with ¢ = 1) and quadratic (with g = 2)
kernels, given as

Ki(xy)=x"y
Ka(x,y) = (x'y)?
The inhomogeneous polynomial kernel is defined as
K, (x.y) =) o) = (c+x"y)’ (5.9)

where ¢ is the degree of the polynomial, and ¢ > 0 is some constant. When ¢ =0 we
obtain the homogeneous kernel. When ¢ > 0, this kernel corresponds to the feature
space spanned by all products of at most g attributes. This can be seen from the
binomial expansion

q
K,(xy)=(+x"y) =) (Z)ch (xTy)"

k=1
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For example, for the typical value of ¢ = 1, the inhomogeneous kernel is a weighted
sum of the homogeneous polynomial kernels for all powers up to ¢, that is,

u=+xTyﬂ==1—%quy+—<g)(xTy)2+~-~+q(xTyY1+(xTyY

Example 5.6. Consider the points x; and x5 in Figure 5.1.

o = 5.9 . 6.9
A 2= 31
The homogeneous quadratic kernel is given as
K(x1,x2) = (xlsz)2 =50.01% = 2501

The inhomogeneous quadratic kernel is given as

K(x1,%2) = (1 +x1x2)2 = (14 50.01)2 = 51.01% = 2602.02

For the polynomial kernel it is possible to construct a mapping ¢ from the
input to the feature space. Let ng,n1,...,n, denote non-negative integers, such that
Z?:o”i =gq. Further, let n = (ng,n1,...,n4), and let |n| = Z?:o”i =q. Also, let (;’])
denote the multinomial coefficient

AN q _ q!
n ng,ni,...,Nq nolni!...ng!

The multinomial expansion of the inhomogeneous kernel is then given as

d q
Kooy =(e+xty)’= (c+ Zxkyk> =(c+xiy1+-+xaya)
k=1

= <Iql)0"° (x1y1)™ (x2y2)"? ... (xgya)"

In|=¢
_ q C”O (xnlxng xlld)( ni_ng nd)
= n 1 X e Xy )\ V1 V2§ Yy
In|=¢
d d
-3 (varl ) (vl
In|=q k=1 k=1
=) o)
where a, = (Z)c"o, and the summation is over all n = (ng,n1,...,ny) such that |n| =

no+ny +---+ny = q. Using the notation x™ = []¢_, x;*, the mapping ¢ : RY — R” is
given as the vector

d T
dx) =(...,anx",..) T = ( /(i)cnonx,’jk, )
k=1
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where the variable n = (ng,...,ns) ranges over all the possible assignments, such that
In| =g¢. It can be shown that the dimensionality of the feature space is given as

(d + q)

m =

q

Example 5.7 (Quadratic Polynomial Kernel). Let x,y € R? and let ¢ = 1. The
inhomogeneous quadratic polynomial kernel is given as

K(x,y) = (1 +x7y)% = (1 +x1y1 +x2y2)?

The set of all assignments n = (ng,ni,n2), such that |n| = g = 2, and the
corresponding terms in the multinomial expansion are shown below.

Assignments | Coefficient Variables
n=(ng,n1,n2) | an=()c" | x"y" = ]_Ile (xyi)"

(1,1,0) 2 X1y1
(1,0,1) 2 X2Yy2
0,1,1) 2 X1y1X2y2
(2,0,0) 1 1
0,2,0) 1 (x1y1)?
(0,0,2) 1 (x2y2)*

Thus, the kernel can be written as
Kx,y) =14 2x1y1 4+ 2x2y2 + 2x1y1X2Y2 +xfy% +x§y22
= (1, V2x1,7/2x3, «/Exm,xf,xgz) (1, V2y1,+/2y3, ﬁylyz,yiyzz)T
=) o)

When the input space is R2, the dimensionality of the feature space is given as

e (1) (19 )

In this case the inhomogeneous quadratic kernel with ¢ = 1 corresponds to the
mapping ¢ : R? — R, given as

P (x) = (1, \/Exl, «/Exz, ﬁxlxz, xlz, x%)T
For example, for x; = (5.9,3)T and x2 = (6.9,3.1)T, we have
D) = (1,«/5-5.9,«/5-3,«/5-5.9-3, 5.92, 32)T
= (1,8.34,4.24,25.03,34.81,9)"
1,+/2-6.9,4/2-3.1,+/2-6.9-3.1, 6.92, 3.12)T

— (1,9.76,4.38,30.25, 47.61,9.61)

¢ (x2)
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Thus, the inhomogeneous kernel value is
¢ (x1) P (x2) = 1+81.40 4 18.57 + 757.16 + 1657.30 ++ 86.49 = 2601.92

On the other hand, when the input space is R?, the homogeneous quadratic kernel
corresponds to the mapping ¢ : R2 — R3, defined as

T
$(0 = (V2rixa, 2, 23)
because only the degree 2 terms are considered. For example, for x; and x5, we have
T
P(x1) = (ﬁ-5.9-3, 5.9, 32) =(25.03,34.81,9)"
2 2\ T T

P (x2) = <\/§-6.9-3.1, 6.9%, 3.1 ) = (30.25,47.61,9.61)

and thus

K(x1,%2) = ¢(x1) T (x2) = 757.16 + 1657.3 + 86.49 = 2500.95

These values essentially match those shown in Example 5.6 up to four significant
digits.

Gaussian Kernel
The Gaussian kernel, also called the Gaussian radial basis function (RBF) kernel, is
defined as

53 (5.10)

2
K(x,y):exp{_”x‘y” }

where o > 0 is the spread parameter that plays the same role as the standard deviation
in a normal density function. Note that K(x,x) =1, and further that the kernel value
is inversely related to the distance between the two points x and y.

Example 5.8. Consider again the points x; and x5 in Figure 5.1:

2=(%) ==(51)

The squared distance between them is given as
It —xal|? = | (=1, —0.)T|* =12 +0.12 = 1.01

With o =1, the Gaussian kernel is

2

2

K(x1,x2) =exp{— } =exp{—0.51}=0.6

It is interesting to note that a feature space for the Gaussian kernel has infinite
dimensionality. To see this, note that the exponential function can be written as the
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infinite expansion

oo n

_ a 1 1 1
exp{a}_X(;n—_ —l—a~|—§a —l—ga +--

Further, using y = and noting that ||x — y||2 IxI1%+ llyl* — 2xTy, we can rewrite

57
the Gaussian kernel as follows:
K(x,y) = exp{—y [x—yl*}
= exp{~y lxI?} - exp{—y IylI*} - exp {2yx"y}
In particular, the last term is given as the infinite expansion

oo

21)4
exp{2yx"Ty =Z(;) X y) =1+Q@y)x" Y+

2
COJRN

q=0

Using the multinomial expansion of (x'y)?, we can write the Gaussian kernel as

o0 21,4 d
K(X,y)=exp{—)/||X||2}exp{—)/||Y||2}Z% Z(fl)]‘[(xkyk)"k
k=1

=0 In|=¢
=>> ( Vagnexp{—y ||x||2}1‘[x2k> ( fagnexp{—yllyl® ]‘[ )
¢=0 |n|=¢q k=1 k=1
=) P (y)
where a, , = (2;’!)4 (n), and n = (ny,n9,...,ny), with |n| =ny +ns+4+---+n, =¢q. The

mapping into feature space corresponds to the function ¢ : R? — R>®

2 a
o (x) = ( (CIL')CICIL) exp{—J/HxIIQ}l_[xk", )
’ k=1

with the dimensions ranging over all degrees ¢ =0,...,00, and with the variable n =
(n1,...,nq) ranging over all possible assignments such that |n| = ¢ for each value of
q. Because ¢ maps the input space into an infinite dimensional feature space, we
obviously cannot explicitly transform x into ¢ (x), yet computing the Gaussian kernel
K(x,y) is straightforward.

T

5.3 BASIC KERNEL OPERATIONS IN FEATURE SPACE

Let us look at some of the basic data analysis tasks that can be performed solely via
kernels, without instantiating ¢ (x).

Norm of a Point
We can compute the norm of a point ¢(x) in feature space as follows:

lp)II* =) ¢ (x) = K(x,%)
which implies that ||¢ (x)|| = vVK(x,x).
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Distance between Points
The distance between two points ¢(x;) and ¢(x;) can be computed as

o) =) * =l l> + o ) |* — 20 (x) T (x7) (5.11)
= K(Xl', Xl') + K(Xj, Xj) — 2K(X,‘, Xj)

which implies that

$(p(x). d(x))) = ¢ (x) — P (x) | = VK xi, x:) + K(x;, %) — 2K (x4, %)

Rearranging Eq. (5.11), we can see that the kernel value can be considered as a
measure of the similarity between two points, as

1
5 (lp GO + e NI =l (xi) —px)IP) = K(xi, %) = p(x) T (x;)

Thus, the more the distance [|¢(x;) — ¢ (x;)|| between the two points in feature space,
the less the kernel value, that is, the less the similarity.

Example 5.9. Consider the two points x; and xo in Figure 5.1:

(5.9 (6.9
B W 2= 31
Assuming the homogeneous quadratic kernel, the norm of ¢(x3) can be computed
as

lpx)I1? =K(xq,x1) = (x5 x1)? = 43.812 = 1919.32

which implies that the norm of the transformed point is ||¢(x1)| = ~/43.812 = 43.81.
The distance between ¢(x1) and ¢ (x2) in feature space is given as

8(p(x1), ¢ (x2)) = VK (x1,%1) + K(x2, X2) — 2K(x1, X2)
= \/1919.32 +3274.13—-2-2501= £/191.45 =13.84

Mean in Feature Space
The mean of the points in feature space is given as

1 n
o=~ H(x)
i=1

Because we do not, in general, have access to ¢ (x;), we cannot explicitly compute the
mean point in feature space.
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Nevertheless, we can compute the squared norm of the mean as follows:

g 1” = oy pgs
1w T
= (—Zcﬁ(xi)) N e))
" n j=1
1 n n
=520 ¢G0T o)
i=1 j=1
1 n n
= n—2 ZZK(Xi,Xj) (512)
i=1 j=1

The above derivation implies that the squared norm of the mean in feature space is
simply the average of the values in the kernel matrix K.

Example 5.10. Consider the five points from Example 5.3, also shown in Figure 5.1.
Example 5.4 showed the norm of the mean for the linear kernel. Let us consider the
Gaussian kernel with o = 1. The Gaussian kernel matrix is given as

1.00 0.60 0.78 0.42 0.72
0.60 1.00 0.94 0.07 0.44
K=]078 094 1.00 0.13 0.65
0.42 0.07v 0.13 1.00 0.23
0.72 044 0.65 0.23 1.00

The squared norm of the mean in feature space is therefore

e 14.98
HMH2=%ZZK(XZ-,XJ~)=T=0.599

i=1 j=1

which implies that |p,| =+/0.599 =0.774.

Total Variance in Feature Space
Let us first derive a formula for the squared distance of a point ¢(x;) to the mean pu,
in feature space:

i) — mgll® = ldON* =20 x) Ty + Iy lI?

n n

=K(xi, %) — %ZK(xi,xj) + nig D0 Kxaxp)
j=1

a=1 b=1

The total variance [Eq. (1.4)] in feature space is obtained by taking the average
squared deviation of points from the mean in feature space:

1 n
o) =~ o) — hyl?

i=1
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n n

=%Z Kxi,x;) — ZK<XHXJ>+ 2ZEK(X,J,X;,)
i=1

a=1 b=1
:%ZK(X,-,X,-)—%ZZK(Xi,Xj)+:—3ZZK(Xa,Xh)
i=1 i=1 j=1 a=1b=1
== ZK(X,,X, — ZZK(X,,x, (5.13)
i=1 j=1

In other words, the total variance in feature space is given as the difference between
the average of the diagonal entries and the average of the entire kernel matrix K. Also
notice that by Eq. (5.12) the second term is simply H Ry ||2

Example 5.11. Continuing Example 5.10, the total variance in feature space for the
five points, for the Gaussian kernel, is given as

( ZK(X,,X,> 1| _lx5 0.599 = 0.401

The distance between ¢ (x1) and the mean p, in feature space is given as

16.Ger) — g I* =Ko, 1) — = ZK(xl,x» + g |
j 1

2
=i (1+0.6+0.7840.42 +0.72) + 0.599

=1-1.41040.599=0.189

Centering in Feature Space
We can center each point in feature space by subtracting the mean from it, as follows:

PGx) = (xi) —

Because we do not have explicit representation of ¢(x;) or py, we cannot explicitly
center the points. However, we can still compute the centered kernel matrix, that is,
the kernel matrix over centered points.

The centered kernel matrix is given as

K= ’K(Xi, Xj) ]i,j:l
where each cell corresponds to the kernel between centered points, that is
K(xi, %)) = $(x) "¢ (x;)
= ($(x) — )" (9 () — py)
=) P () — )ty — D) T g+ g
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1< 1<
=K(xi,x)) =~ lewxi)%(xk) - leqs(x,)Tas(xk) + g2
k= k=

n n

1 n 1 n 1
=K, x5) — - ZK(Xth) - ZK(st Xi) + 2 ZZK(Xa,Xb)
f=1 f=1

a=1 b=1

In other words, we can compute the centered kernel matrix using only the kernel
function. Over all the pairs of points, the centered kernel matrix can be written
compactly as follows:

N 1 1 1
K=K- _111><11K_ _Klnxn+ 2111><11K1n><n
n n n

1 1
= (I - _111><n> K <I - _111><n) (514)
n n

where 1,., is the n x n singular matrix, all of whose entries equal 1.

Example 5.12. Consider the first five points from the 2-dimensional Iris dataset
shown in Figure 5.1a:

a= () w=(9) 0= (8 x=(M) we(2)

Consider the linear kernel matrix shown in Figure 5.1b. We can center it by first
computing

0.8 -02 -02 -0.2 -0.2

1 —-0.2 0.8 =02 —-02 -0.2

I- 315X5 =|-02 -0.2 0.8 —-0.2 -0.2
-0.2 -0.2 -0.2 0.8 —0.2

-0.2 -0.2 -0.2 -0.2 0.8

The centered kernel matrix [Eq. (5.14)] is given as

43.81 50.01 47.64 36.74 42.00

R 1 50.01 57.22 54.53 41.66 48.22 1

K= (I = —15X5) -| 47.64 54.53 51.97 39.64 45.98] - (I = —15X5>
36.74 41.66 39.64 31.40 34.64
42.00 48.22 4598 34.64 40.84

0.02 -0.06 —-0.06 0.18 -0.08
-0.06 086 0.54 -1.19 -0.15
=|-0.06 054 036 -0.83 -0.01
0.18 -1.19 -0.83 2.06 —0.22
-0.08 —-0.15 —-0.01 -0.22  0.46

To verify that K is the same as the kernel matrix for the centered points, let us
first center the points by subtracting the mean g = (6.0, 2.88)T. The centered points
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in feature space are given as

L (01y (09 (06 o (14) (00
=012 27 \0.22 37 \0.02 *=\0.32 >~ \-0.68
For example, the kernel between ¢ (z1) and ¢ (z2) is

¢ (21) ¢ (22) = 21 25 = —0.09+0.03 = —0.06

which matches K(xl, X2), as expected. The other entries can be verified in a similar
manner. Thus, the kernel matrix obtained by centering the data and then computing
the kernel is the same as that obtained via Eq. (5.14).

Normalizing in Feature Space

A common form of normalization is to ensure that points in feature space have unit
length by replacing ¢ (x;) with the corresponding unit vector ¢, (x;) = % The dot
product in feature space then corresponds to the cosine of the angle between the two

mapped points, because

_ dx) TP (x))
oG] - oG]

=cosf

$n () T (x))

If the mapped points are both centered and normalized, then a dot product
corresponds to the correlation between the two points in feature space.

The normalized kernel matrix, K,,, can be computed using only the kernel function
K, as

¢ x) TP (x)) _ K(xi,x;)
leGn|-llecn] VG x) K, x)

Kn(XivXj) =

K, has all diagonal elements as 1.
Let W denote the diagonal matrix comprising the diagonal elements of K:

K(Xl,Xl) O 0

0 K(x2,x2) --- 0

W =diag(K) = ) . . .
0 0 o K(xp, %)

The normalized kernel matrix can then be expressed compactly as
K, =W 2. K. w2

where W™1/2 is the diagonal matrix, defined as W12 (x;, x;) = , with all other

1
~ Kxi.x;)

elements being zero.
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Example 5.13. Consider the five points and the linear kernel matrix shown in
Figure 5.1. We have

43.81 0 0 0 0
0 57.22 0 0 0
W= 0 0 51.97 0 0
0 0 0 31.40 0
0 0 0 0 40.84

The normalized kernel is given as

1.0000 0.9988 0.9984 0.9906 0.9929
0.9988 1.0000 0.9999 0.9828 0.9975
K,=WY2.K.-W2=]0.9984 0.9999 1.0000 0.9812 0.9980
0.9906 0.9828 0.9812 1.0000 0.9673
0.9929 0.9975 0.9980 0.9673 1.0000

The same kernel is obtained if we first normalize the feature vectors to have unit
length and then take the dot products. For example, with the linear kernel, the
normalized point ¢,(x1) is given as

b= 200 _ a1 <5.9>_(0.8914)
"ol Ikl va3er\ 3 )~ \0.4532

Likewise, we have ¢,(x2) = \/ﬁ (g?) — (8253;) Their dot product is

G (x1) Ty (x2) = 0.8914-0.9122 + 0.4532 - 0.4098 = 0.9988

which matches K, (x1,x2).
If we start with the centered kernel matrix K from Example 5.12, and then
normalize it, we obtain the normalized and centered kernel matrix K,,:

1.00 —-0.44 -0.61 0.80 —-0.77

—0.44 1.00 098 -0.89 —-0.24
K,=|-0.61 0.98 1.00 —-0.97 -0.03
0.80 —0.89 —-0.97 1.00 —-0.22

—-0.77 —-0.24 —-0.03 -0.22 1.00

As noted earlier, the kernel value K,, (xi,x;) denotes the correlation between x; and

x; in feature space, that is, it is cosine of the angle between the centered points ¢ (x;)
and ¢ (x;).

5.4 KERNELS FOR COMPLEX OBJECTS

We conclude this chapter with some examples of kernels defined for complex data such
as strings and graphs. The use of kernels for dimensionality reduction is described in
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Section 7.3, for clustering in Section 13.2 and Chapter 16, for discriminant analysis in
Section 20.2, and for classification in Sections 21.4 and 21.5.

5.4.1 Spectrum Kernel for Strings

Consider text or sequence data defined over an alphabet 3. The I[-spectrum
feature map is the mapping ¢: ©* — RIZ from the set of substrings over ¥ to
the |Z|'-dimensional space representing the number of occurrences of all possible
substrings of length I, defined as

960 = (- @)

aex!

where #(«) is the number of occurrences of the /-length string « in x.

The (full) spectrum map is an extension of the [-spectrum map, obtained by
considering all lengths from [ =0 to [ = 00, leading to an infinite dimensional feature
map ¢ : X* — R*:

$(x) = (... ,#(a),...)T

aex*

where # () is the number of occurrences of the string « in x.
The (I-)spectrum kernel between two strings x;,x; is simply the dot product
between their (I-)spectrum maps:

K, %) = ()T (x))

A naive computation of the I-spectrum kernel takes O(|Z|") time. However, for a
given string x of length n, the vast majority of the I-length strings have an occurrence
count of zero, which can be ignored. The [-spectrum map can be effectively computed
in O(n) time for a string of length n (assuming n 3> 1) because there can be at most
n—1+ 1 substrings of length /, and the /-spectrum kernel can thus be computed in
O(n 4+ m) time for any two strings of length n and m, respectively.

The feature map for the (full) spectrum kernel is infinite dimensional, but once
again, for a given string x of length n, the vast majority of the strings will have
an occurrence count of zero. A straightforward implementation of the spectrum map
for a string x of length n can be computed in O(n?) time because x can have at
most » ;_;n—1+4+1=n(n+1)/2 distinct nonempty substrings. The spectrum kernel
can then be computed in O(n? + m?) time for any two strings of length n and m,
respectively. However, a much more efficient computation is enabled via suffix trees
(see Chapter 10), with a total time of O(n+m).

Example 5.14. Consider sequences over the DNA alphabet X = {A,C, G, T}. Let
x1 = ACAGCAGTA, and let xo = AGCAAGCGAG. For [ = 3, the feature space has
dimensionality |Z|' = 4% = 64. Nevertheless, we do not have to map the input points
into the full feature space; we can compute the reduced 3-spectrum mapping by
counting the number of occurrences for only the length 3 substrings that occur in
each input sequence, as follows:

¢(x1)=(ACA:1,AGC:1,AGT:1,CAG:2,GCA:1,GTA:1)
¢(x2) = (AAG:1,AGC:2,CAA:1,CGA:1,GAG:1,GCA:1,GCG: 1)
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where the notation « : #(«) denotes that substring o has #(«) occurrences in x;.
We can then compute the dot product by considering only the common substrings,
as follows:

K, %) =1x2+1x1=2+1=3

The first term in the dot product is due to the substring AGC, and the second is

due to GCA, which are the only common length 3 substrings between x; and xs.
The full spectrum can be computed by considering the occurrences of all common

substrings over all possible lengths. For x; and x2, the common substrings and their

occurrence counts are given as

@« |A C G AG CA AGC GCA AGCA
H@inx, |4 2 2 2 2 1 1 1
#)inxe |4 2 4 3 1 2 1 1

Thus, the full spectrum kernel value is given as

K(x1,X2) =16 +4+84+6+2+2+1+1=40

5.4.2 Diffusion Kernels on Graph Nodes

Let S be some symmetric similarity matrix between nodes of a graph G = (V,E). For
instance, S can be the (weighted) adjacency matrix A [Eq.(4.1)] or the Laplacian
matrix L =A — A (or its negation), where A is the degree matrix for an undirected
graph G, defined as A(i,i) =d; and A(i, j) =0 for all i # j, and d; is the degree of
node i.

Consider the similarity between any two nodes obtained by summing the product
of the similarities over paths of length 2:

8(2)(X,', X)) = ZS(X,‘, Xa)S (X4, X)) = SiTSf

a=1

where
T
Si = (S(Xia Xl)a S(Xia X2)a KRR} S(Xia Xn))

denotes the (column) vector representing the i-th row of S (and because S is symmetric,
it also denotes the ith column of S). Over all pairs of nodes the similarity matrix over
paths of length 2, denoted S®, is thus given as the square of the base similarity
matrix S:

S@ =8 xS =52
In general, if we sum up the product of the base similarities over all /-length paths

between two nodes, we obtain the [-length similarity matrix S®, which is simply the
Ith power of S, that is,

SO =g
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Power Kernels

Even path lengths lead to positive semidefinite kernels, but odd path lengths are not
guaranteed to do so, unless the base matrix S is itself a positive semidefinite matrix.
In particular, K = S2 is a valid kernel. To see this, assume that the ith row of S denotes
the feature map for x;, that is, ¢(x;) = S;. The kernel value between any two points is
then a dot product in feature space:

K(xi, %) = S? (6, %) = 81'S; = (x) T (x))
For a general path length [, let K =S'. Consider the eigen-decomposition of S:
S=UAU" =) uu
i=1

where U is the orthogonal matrix of eigenvectors and A is the diagonal matrix of
eigenvalues of S:

M0 0
[ I 0 Ao 0
U= up Us -+ U, A= . . .
| | o 0
0 0 A

The eigen-decomposition of K can be obtained as follows:
K=¢ = (UAUT) = U(A)UT

where we used the fact that eigenvectors of S and S' are identical, and further that
eigenvalues of &' are given as (A;)’ (foralli =1,...,n), where A; is an eigenvalue of S. For
K =5 to be a positive semidefinite matrix, all its eigenvalues must be non-negative,
which is guaranteed for all even path lengths. Because (;)! will be negative if [ is odd
and A; is negative, odd path lengths lead to a positive semidefinite kernel only if S is
positive semidefinite.

Exponential Diffusion Kernel

Instead of fixing the path length a priori, we can obtain a new kernel between nodes of
a graph by considering paths of all possible lengths, but by damping the contribution
of longer paths, which leads to the exponential diffusion kernel, defined as

- 1 gl
K:Zl—!ﬂS
=0
1 2@2 1 3q3
=I+,BS+§,3 S +§,3 5%+

= exp{BS} (5.15)

where 8 is a damping factor, and exp{BS} is the matrix exponential. The series on the
right hand side above converges for all g > 0.
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Substituting S=UAUT = Y""_ A;u;ul in Eq. (5.15), and utilizing the fact that
uut =37, wul =1, we have

1
K:1+ﬁs+5ﬁ282+---

= (iz;:u,-uiT> + (guiﬁkiu?) + (Zn:ui%fﬂ)\?u;r) +---

i=1

. 1
=Zu,-(1+ﬂx,-+5ﬂ2x,?+---)u;f
i=1

=Y ujexp{Bii} uf

i=1

exp{Bii} 0 0
0 o} o0
—ul| xpifa] . g (5.16)
0 0 o explfh]

Thus, the eigenvectors of K are the same as those for S, whereas its eigenvalues are
given as exp{BX;}, where A; is an eigenvalue of S. Further, K is symmetric because S
is symmetric, and its eigenvalues are real and non-negative because the exponential
of a real number is non-negative. K is thus a positive semidefinite kernel matrix. The
complexity of computing the diffusion kernel is O(n?) corresponding to the complexity
of computing the eigen-decomposition.

Von Neumann Diffusion Kernel
A related kernel based on powers of S is the von Neumann diffusion kernel, defined as

K=Y p's (5.17)
1=0

where 8 > 0. Expanding Eq. (5.17), we have

K=1+pS+p?S*+p°S* +-..
=1+ BSA+BS+ 7S +--)
=1+ BSK

Rearranging the terms in the preceding equation, we obtain a closed form expression
for the von Neumann kernel:

K—BSK =1

(I-BSK=1
K=(I-p9"" (5.18)
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Plugging in the eigen-decomposition S =UAUT, and rewriting I = UUT, we have
-1
K:Qﬂﬂ—meUﬂ
-1

Z(Ua—ﬂAﬂﬂ)

=U(I-pgA)'UT
where (I— BA)~! is the diagonal matrix whose ith diagonal entry is (1 — fA;)~'. The
eigenvectors of K and S are identical, but the eigenvalues of K are given as 1/(1 — BA;).

For K to be a positive semidefinite kernel, all its eigenvalues should be non-negative,
which in turn implies that

(1-Br)"'>0
1—Br>0
B=<1/x

Further, the inverse matrix (I — BA)~! exists only if

n

det(1—pA) =] [~ pr) #0

i=1
which implies that B8 # 1/A; for all i. Thus, for K to be a valid kernel, we require
that 8 <1/A; for alli =1,...,n. The von Neumann kernel is therefore guaranteed to

be positive semidefinite if |8] < 1/p0(S), where p(S) = max;{|};|} is called the spectral
radius of S, defined as the largest eigenvalue of S in absolute value.

Example 5.15. Consider the graph in Figure 5.2. Its adjacency and degree matrices
are given as

0 0110 2 0 0 0 O
0 01 01 0 2 0 00
A=]1 1 0 1 0 A=]0 0 3 0 O
1 01 01 0 00 30
01 010 0 0 0 0 2

Figure 5.2. Graph diffusion kernel.
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The negated Laplacian matrix for the graph is therefore

=2 0 1 1 0

0 -2 1 0 1

S=-L=A-D= 1 1 -3 1 0
1 0 1 -3 1

0 1 0 1 =2

The eigenvalues of S are as follows:

A1 =0 Ay =—1.38 A3 =—2.38 Ay =—3.62 As = —4.62
and the eigenvectors of S are
/ uq ug ug Ug us\
0.45 —-0.63 0.00 0.63 0.00
U= 0.45 0.51 -0.60 0.20 -0.37
“ 1045 —0.20 —0.37 —0.51 0.60
0.45 —-0.20 0.37 —0.51 —-0.60
0.45  0.51 0.60 0.20  0.37
Assuming 8 = 0.2, the exponential diffusion kernel matrix is given as
exp{0.211} 0 0
0 exp{0.2X2} --- 0
K =exp{0.2S}=U ) i uT
: : o 0
0 0 -+« exp{0.2)1,}

0.70 0.01 0.14 0.14 0.01
0.01 0.70 0.13 0.03 0.14
=10.14 0.13 0.59 0.13 0.03
0.14 0.03 0.13 0.59 0.13
0.01 0.14 0.03 0.13 0.70

For the von Neumann diffusion kernel, we have

0.00 0.00 0.00 0.00
0.78 0.00 0.00 0.00
0.00 0.68 0.00 0.00
0.00 0.00 0.58 0.00
0.00 0.00 0.00 0.52

(I-02A) 1=

S O O O =

For instance, because Ay = —1.38, we have 1 — BA; =1+ 0.2 x 1.38 = 1.28, and
therefore the second diagonal entry is (1—Bi2) ™! =1/1.28 =0.78. The von Neumann
kernel is given as

0.75 0.02 0.11 0.11 0.02
0.02 0.74 0.10 0.03 0.11
K=UI-0.2A)"'UT=]0.11 0.10 0.66 0.10 0.03
0.11 0.03 0.10 0.66 0.10
0.02 0.11 0.03 0.10 0.74
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5.5 FURTHER READING

Kernel methods have been extensively studied in machine learning and data mining.
For an in-depth introduction and more advanced topics see Scholkopf and Smola
(2002) and Shawe-Taylor and Cristianini (2004). For applications of kernel methods
in bioinformatics see Scholkopf, Tsuda, and Vert (2004).

Scholkopf, B. and Smola, A. J. (2002). Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. Cambridge, MA: MIT
Press.

Scholkopf, B., Tsuda, K., and Vert, J.-P. (2004). Kernel Methods in Computational
Biology. Cambridge, MA: MIT Press.

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel Methods for Pattern Analysis.
New York: Cambridge University Press.

5.6 EXERCISES

Q1. Prove that the dimensionality of the feature space for the inhomogeneous polynomial

()

Q2. Consider the data shown in Table 5.1. Assume the following kernel function: K(x;,x;) =

kernel of degree ¢q is

lIx; —x; I?. Compute the kernel matrix K.

Table 5.1. Dataset for

Q2
i X;
X1 4,2.9)
Xo (2.5,1)
X3 (3.5,4)
X4 2,2.1)

Q3. Show that eigenvectors of S and S! are identical, and further that eigenvalues of S! are
given as )t (for all i =1,...,n), where }; is an eigenvalue of S, and S is some n x n
symmetric similarity matrix.

Q4. The von Neumann diffusion kernel is a valid positive semidefinite kernel if |8| < ﬁ7
where p(S) is the spectral radius of S. Can you derive better bounds for cases when
B >0 and when B < 07

Q5. Given the three points x1 = (2.5, 1)T, xo = (3.5,4)T, and x3 = (2,2.1)7.
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(a) Compute the kernel matrix for the Gaussian kernel assuming that o2 = 5.
(b) Compute the distance of the point ¢ (x1) from the mean in feature space.
(¢) Compute the dominant eigenvector and eigenvalue for the kernel matrix from (a).



High-dimensional Data

In data mining typically the data is very high dimensional, as the number of
attributes can easily be in the hundreds or thousands. Understanding the nature
of high-dimensional space, or hyperspace, is very important, especially because
hyperspace does not behave like the more familiar geometry in two or three dimensions.

6.1 HIGH-DIMENSIONAL OBJECTS

Consider the n x d data matrix

/ | X; Xy o - Xd\
X1 X11 X12  + X1d
D=1 X2 X21 X222 t+ X24
Xn Xn1 Xn2 Xnd

where each point x; € R? and each attribute X; € R".

Hypercube
Let the minimum and maximum values for each attribute X; be given as

min(X;) = min {x,-j} max(X;) = max {x,-j}

The data hyperspace can be considered as a d-dimensional hyper-rectangle, defined
as

d
R, = n[min(Xj), maX(Xj)]
j=1

{x: (x1,%2,...,x)T |xj € [min(X;), max(X;)], for j = 1,...,d}

164
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Assume the data is centered to have mean p = 0. Let m denote the largest absolute
value in D, given as

d n
m= maxmax’ |x,~j|]
j=1 i=1

The data hyperspace can be represented as a hypercube, centered at 0, with all sides
of length [ = 2m, given as

Hy () = {x= (1, Xar o xa) T | Vi xi € [—1/2,1/2]}

The hypercube in one dimension, H;(l), represents an interval, which in two
dimensions, Hs(/), represents a square, and which in three dimensions, Hj3(l),
represents a cube, and so on. The unit hypercube has all sides of length / =1, and is
denoted as H,(1).

Hypersphere
Assume that the data has been centered, so that g = 0. Let r denote the largest
magnitude among all points:

r=max{lxi| |
1

The data hyperspace can also be represented as a d-dimensional hyperball centered
at 0 with radius r, defined as

By(r) =[x lIxll <r}

d
or By(r) = ’x: (X1,X2,...,Xq) | ijz < r2]
j=1

The surface of the hyperball is called a hypersphere, and it consists of all the points
exactly at distance r from the center of the hyperball, defined as

Sa(r)={x| lIxl =r}

d
or Sy(r) = {X: (X1, X2, ..., Xq) | Z(xj)2 =r2}
j=1

Because the hyperball consists of all the surface and interior points, it is also called a
closed hypersphere.

Example 6.1. Consider the 2-dimensional, centered, Iris dataset, plotted in
Figure 6.1. The largest absolute value along any dimension is m = 2.06, and the
point with the largest magnitude is (2.06, 0.75), with r =2.19. In two dimensions, the
hypercube representing the data space is a square with sides of length [ =2m =4.12.
The hypersphere marking the extent of the space is a circle (shown dashed) with
radius r =2.19.



166 High-dimensional Data

Xs: sepal width

X1: sepal length

Figure 6.1. Iris data hyperspace: hypercube (solid; with 1=4.12) and hypersphere (dashed; with
r=2.19).

6.2 HIGH-DIMENSIONAL VOLUMES

Hypercube
The volume of a hypercube with edge length [ is given as

vol(Hy (1)) = 14

Hypersphere

The volume of a hyperball and its corresponding hypersphere is identical because the
volume measures the total content of the object, including all internal space. Consider
the well known equations for the volume of a hypersphere in lower dimensions

vol(S1(r)) =2r (6.1)
vol(Sa(r)) = 7r? (6.2)
vol(S3(r)) = %nr3 (6.3)

As per the derivation in Appendix 6.7, the general equation for the volume of a
d-dimensional hypersphere is given as

d
vol(Sy(r)) =Kyr? = (1‘71)) rd (6.4)
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where

d/2

- (6.5)
rE+1

Ky

is a scalar that depends on the dimensionality d, and T' is the gamma function
[Eq. (3.17)], defined as (for « > 0)

(@) =/x°‘_1e_"dx (6.6)
0
By direct integration of Eq. (6.6), we have

'l)=1 and r(%):ﬁ (6.7)

The gamma function also has the following property for any o > 1:
MNo)=(@—-—DI'(ae—-1) (6.8)
For any integer n > 1, we immediately have
Fn)y=m-1! (6.9)

Turning our attention back to Eq. (6.4), when d is even, then % +1 is an integer,

and by Eq. (6.9) we have
r(4e1)=(2)!
2 \2/)”

and when d is odd, then by Eqgs. (6.8) and (6.7), we have

)P )- ()

where d!! denotes the double factorial (or multifactorial), given as

J— 1 ifd=0ord=1
T ld-@-2)0 ifd>2

Putting it all together we have

(%)! if d is even

d
r(s+1)= 6.10
(2 ) ﬁ(%;i—';)/z) if d is odd (6.10)

Plugging in values of I'(d/2+1) in Eq. (6.4) gives us the equations for the volume
of the hypersphere in different dimensions.
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Example 6.2. By Eq. (6.10), we have for d =1, d =2 and d = 3:
r1/241)= %«/F
re/2+h=1-=1
rG3/2+1)= Z«/E

Thus, we can verify that the volume of a hypersphere in one, two, and three
dimensions is given as

vol(Sy(r)) = r=2r
N
T g 2
vol(Sa(r)) = Tr =nr
3/2 4
vol(S3(r)) = ;T r3=_nrd
y T 3

which match the expressions in Egs. (6.1), (6.2), and (6.3), respectively.

Surface Area The surface area of the hypersphere can be obtained by differentiating
its volume with respect to r, given as

d d
area(S,(r)) = %vol(Sd(r)) = (I‘(Zij-l)) dri—1 = (5?;))#_1

2 2

We can quickly verify that for two dimensions the surface area of a circle is given as
2nr, and for three dimensions the surface area of sphere is given as 4mr2.

Asymptotic Volume An interesting observation about the hypersphere volume is
that as dimensionality increases, the volume first increases up to a point, and then
starts to decrease, and ultimately vanishes. In particular, for the unit hypersphere
with r =1,

Jim ol = i

Example 6.3. Figure 6.2 plots the volume of the unit hypersphere in Eq. (6.4) with
increasing dimensionality. We see that initially the volume increases, and achieves
the highest volume for d =5 with vol(S5(1)) = 5.263. Thereafter, the volume drops
rapidly and essentially becomes zero by d = 30.

6.3 HYPERSPHERE INSCRIBED WITHIN HYPERCUBE

We next look at the space enclosed within the largest hypersphere that can be
accommodated within a hypercube (which represents the dataspace). Consider a
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vol(Sq(1))

Figure 6.2. Volume of a unit hypersphere.

hypersphere of radius r inscribed in a hypercube with sides of length 2r. When we
take the ratio of the volume of the hypersphere of radius r to the hypercube with side
length [ = 2r, we observe the following trends.

In two dimensions, we have

vol(Sa(r)) wr? T
vol(Ho(2r)) ~ 4r2 4 78.5%

Thus, an inscribed circle occupies 7 of the volume of its enclosing square, as illustrated

in Figure 6.3a.
In three dimensions, the ratio is given as

vol(S3(r)) _ zr® w
vol(Hs(2r)) 83 6

=52.4%

An inscribed sphere takes up only % of the volume of its enclosing cube, as shown in
Figure 6.3b, which is quite a sharp decrease over the 2-dimensional case.
For the general case, as the dimensionality d increases asymptotically, we get

vol(Sy(r)) . ad/?
im —————=lim ————— — 0
d—oovol(Hy(2r)) d—oo 2‘1F(§ +1)

This means that as the dimensionality increases, most of the volume of the hypercube
is in the “corners,” whereas the center is essentially empty. The mental picture that
emerges is that high-dimensional space looks like a rolled-up porcupine, as illustrated
in Figure 6.4.
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(a) (b)

Figure 6.3. Hypersphere inscribed inside a hypercube: in (a) two and (b) three dimensions.

(a)

Figure 6.4. Conceptual view of high-dimensional space: (a) two, (b) three, (c) four, and (d) higher
dimensions. In d dimensions there are 24 “corners” and 24-1 diagonals. The radius of the inscribed
circle accurately reflects the difference between the volume of the hypercube and the inscribed
hypersphere in d dimensions.

6.4 VOLUME OF THIN HYPERSPHERE SHELL

Let us now consider the volume of a thin hypersphere shell of width € bounded by an
outer hypersphere of radius r, and an inner hypersphere of radius r — €. The volume
of the thin shell is given as the difference between the volumes of the two bounding
hyperspheres, as illustrated in Figure 6.5.

Let S,(r, €) denote the thin hypershell of width €. Its volume is given as

vol(S,(r, €)) = vol(Sy(r)) — vol(Sy(r — €)) = Kyr® — Ky (r — €)?.
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Figure 6.5. Volume of a thin shell (for € > 0).

Let us consider the ratio of the volume of the thin shell to the volume of the outer
sphere:

vol(Sy(r,€))  Kagr! —Ky(r—e)! 1—(1-¢ ¢
vol(S;(r) K rd B ( _>

Example 6.4. For example, for a circle in two dimensions, with r =1 and € =0.01 the
volume of the thin shell is 1 —(0.99)%2 =0.0199~2%. As expected, in two-dimensions,
the thin shell encloses only a small fraction of the volume of the original hypersphere.
For three dimensions this fraction becomes 1 — (0.99)% = 0.0297 ~ 3%, which is still
a relatively small fraction.

Asymptotic Volume
As d increases, in the limit we obtain

d
lmwziml—o—i) -1
d=oo vol(Sy(r))  d—oo r

That is, almost all of the volume of the hypersphere is contained in the thin shell
as d — 0o. This means that in high-dimensional spaces, unlike in lower dimensions,
most of the volume is concentrated around the surface (within €) of the hypersphere,
and the center is essentially void. In other words, if the data is distributed uniformly
in the d-dimensional space, then all of the points essentially lie on the boundary of
the space (which is a d — 1 dimensional object). Combined with the fact that most of
the hypercube volume is in the corners, we can observe that in high dimensions, data
tends to get scattered on the boundary and corners of the space.
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6.5 DIAGONALS IN HYPERSPACE

Another counterintuitive behavior of high-dimensional spaces deals with the diagonals.
Let us assume that we have a d-dimensional hypercube, with origin 0; = (01, 02, ..., 0,),
and bounded in each dimension in the range [—1,1]. Then each “corner” of the
hyperspace is a d-dimensional vector of the form (+1;,%1,,...,+1,)T. Let ¢ =
(01,...,1;,...,0,)T denote the d-dimensional canonical unit vector in dimension i,
and let 1 denote the d-dimensional diagonal vector (14, 1o,..., 1)7T.

Consider the angle 6, between the diagonal vector 1 and the first axis e, in d
dimensions:

el'l _ ell 11
lerl LI~ fore,vim1 VIVd  Vd

Example 6.5. Figure 6.6 illustrates the angle between the diagonal vector 1 and
e, for d =2 and d = 3. In two dimensions, we have cosfy = % whereas in three

cosfy =

dimensions, we have cosf3 = %

Asymptotic Angle

As d increases, the angle between the d-dimensional diagonal vector 1 and the first
axis vector e is given as

hm cosfy = lim — — 0

~>oo«/—

which implies that

d—o0

. T
lim 6; — 7= 90°

(a)

Figure 6.6. Angle between diagonal vector 1 and e;: in (a) two and (b) three dimensions.



Density of the Multivariate Normal 173

This analysis holds for the angle between the diagonal vector 1, and any of the d
principal axis vectors e; (i.e., for all i € [1,d]). In fact, the same result holds for any
diagonal vector and any principal axis vector (in both directions). This implies that
in high dimensions all of the diagonal vectors are perpendicular (or orthogonal) to
all the coordinates axes! Because there are 2¢ corners in a d-dimensional hyperspace,
there are 2¢ diagonal vectors from the origin to each of the corners. Because the
diagonal vectors in opposite directions define a new axis, we obtain 27! new axes,
each of which is essentially orthogonal to all of the d principal coordinate axes! Thus,
in effect, high-dimensional space has an exponential number of orthogonal “axes.” A
consequence of this strange property of high-dimensional space is that if there is a
point or a group of points, say a cluster of interest, near a diagonal, these points will
get projected into the origin and will not be visible in lower dimensional projections.

6.6 DENSITY OF THE MULTIVARIATE NORMAL

Let us consider how, for the standard multivariate normal distribution, the density of
points around the mean changes in d dimensions. In particular, consider the probability
of a point being within a fraction « > 0, of the peak density at the mean.

For a multivariate normal distribution [Eq. (2.33)], with g =0, (the d-dimensional
zero vector), and X =1, (the d x d identity matrix), we have

f6)=— { XTX} (6.11)

X) = ———exp]—— .
Wi 12

At the mean u =0,, the peak density is f(0;) = (\/T;n)d Thus, the set of points x with

density at least « fraction of the density at the mean, with 0 <« < 1, is given as

£ _

- o

£~
which implies that

7]
exp —T > o

or x'x < —2In(a)

d
and thus Y " (x,)* < —2In(e) (6.12)
i=1

It is known that if the random variables X, X5, ..., X; are independent and
identically distributed, and if each variable has a standard normal distribution, then
their squared sum X2 +X32+-..4X? follows a x? distribution with k degrees of freedom,
denoted as x?. Because the projection of the standard multivariate normal onto any
attribute X; is a standard univariate normal, we conclude that xTx = Z?=1 (x;)? has
a x?2 distribution with d degrees of freedom. The probability that a point x is within
o times the density at the mean can be computed from the x2 density function using
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Eq. (6.12), as follows:

P (% > a) =P(x'x < —2In(e))

—2In(a)
= / fxf xTx)
0
= Fxf (—2In(a)) (6.13)

where fxqz (x) is the chi-squared probability density function [Eq. (3.16)] with ¢ degrees
of freedom:
1 4 9 _x

2

1) = qr )

and quz (x) is its cumulative distribution function.
As dimensionality increases, this probability decreases sharply, and eventually
tends to zero, that is,
lim P (x"x < —2In(a)) - 0 (6.14)
d—o00

Thus, in higher dimensions the probability density around the mean decreases very
rapidly as one moves away from the mean. In essence the entire probability mass
migrates to the tail regions.

Example 6.6. Consider the probability of a point being within 50% of the density
at the mean, that is, « = 0.5. From Eq. (6.13) we have

P (x"x = —21n(0.5)) = F,2(1.386)

We can compute the probability of a point being within 50% of the peak density
by evaluating the cumulative x? distribution for different degrees of freedom (the
number of dimensions). For d = 1, we find that the probability is Fxlz (1.386) = 76.1%.
For d = 2 the probability decreases to FX22(1.386) = 50%, and for d = 3 it reduces
to 29.12%. Looking at Figure 6.7, we can see that only about 24% of the density is
in the tail regions for one dimension, but for two dimensions more than 50% of the
density is in the tail regions.

Figure 6.8 plots the x7 distribution and shows the probability P (x"x < 1.386)
for two and three dimensions. This probability decreases rapidly with dimensionality;
by d = 10, it decreases to 0.075%, that is, 99.925% of the points lie in the extreme
or tail regions.

Distance of Points from the Mean

Let us consider the average distance of a point x from the center of the standard
multivariate normal. Let r? denote the square of the distance of a point x to the
center u =0, given as

d
r?=lx-0?=x"x=) x7
i=1
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(b)
Figure 6.7. Density contour for « fraction of the density at the mean: in (a) one and (b) two
dimensions.
@) J )
0.5 F=0.29
F=0.5 0.25
0.4
0.20
0.3
0.15
0.2 0.10
0.1 0.05
0 T T ™ X 0 T T L X
0 5 10 15 0 5 10 15
(a) d=2 (b)d=3

Figure 6.8. Probability P(xTx < —2In(x)), with « =0.5.

Note that this book has been published by Cambridge University Press, that no unauthorized distributic
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xTx follows a x2 distribution with d degrees of freedom, which has mean d and variance
2d. Tt follows that the mean and variance of the random variable r? is

w2 =d 0% =2d

r

By the central limit theorem, as d — oo, r2

is approximately normal with mean d
and variance 2d, which implies that 72 is concentrated about its mean value of d. As
a consequence, the distance r of a point x to the center of the standard multivariate
normal is likewise approximately concentrated around its mean v/d.

Next, to estimate the spread of the distance r around its mean value, we need to
derive the standard deviation of r from that of 2. Assuming that o, is much smaller

compared to r, then using the fact that dlogr

= %, after rearranging the terms, we have

dr
— =dlogr
,

1

= “dlogr?
54108
Using the fact that dl;f;z = %2, and rearranging the terms, we obtain

dr 1dr?
ro2r2

which implies that dr = %dr? Setting the change in 72 equal to the standard deviation
of r2, we have dr? = 0,2 = +/2d, and setting the mean radius r = Vd, we have

1 1
/o = —
2Vd V2
We conclude that for large d, the radius r (or the distance of a point x from the
origin 0) follows a normal distribution with mean J/d and standard deviation 1 / V2.
Nevertheless, the density at the mean distance v/d, is exponentially smaller than that
at the peak density because

T p{—xTx/2) = expl—d/2)

10

Combined with the fact that the probability mass migrates away from the mean in

o, =dr=

high dimensions, we have another interesting observation, namely that, whereas the
density of the standard multivariate normal is maximized at the center 0, most of
the probability mass (the points) is concentrated in a small band around the mean
distance of +/d from the center.

6.7 APPENDIX: DERIVATION OF HYPERSPHERE VOLUME

The volume of the hypersphere can be derived via integration using spherical polar
coordinates. We consider the derivation in two and three dimensions, and then for a
general d.
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Xy

(xl’ x2)

01

Xy

Figure 6.9. Polar coordinates in two dimensions.

Volume in Two Dimensions
As illustrated in Figure 6.9, in d = 2 dimensions, the point x = (x1,x2) € R? can be
expressed in polar coordinates as follows:

X1 =rcosb; =rcy

Xo =rsinf, =rs;y

where r = ||x||, and we use the notation cosf; = c¢; and sinf; = s; for convenience.
The Jacobian matrix for this transformation is given as

Oy Ox
_ [ e )_ (€1 —I$n1
(2 3= 72)
ar 961
The determinant of the Jacobian matrix is called the Jacobian. For J(61), the Jacobian
is given as

det(J(1)) =rci+rsi=r(ci+si)=r (6.15)

Using the Jacobian in Eq. (6.15), the volume of the hypersphere in two dimensions
can be obtained by integration over r and 61 (with r > 0, and 0 <6; < 2m)

Vol(Sa(r)) = / f ‘det(.](@l))‘dr 6,

r o6
r 2 r 27
=//rdrd91=/rdr/d91
00 0 0
=ﬁ -91271:7'”2
0 0
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Figure 6.10. Polar coordinates in three dimensions.

Volume in Three Dimensions
As illustrated in Figure 6.10, in d = 3 dimensions, the point x = (x1, x2,x3) € R3 can
be expressed in polar coordinates as follows:
x1 =rcosfycosby =rcico
Xo =rcosf;sinfy =rciso
X3 =rsinf; =rs;
where r = ||x]||, and we used the fact that the dotted vector that lies in the X;—Xs

plane in Figure 6.10 has magnitude r cos6;.
The Jacobian matrix is given as

dxp 0y 0y

or 0601 L) C1C2 —TrS1Cy —TrC189
_ | ox2 dx9 dx9 _
J(91,02) =1\ 5 2 0y | = C152 —rs5182 rcica
dx3  dxg dxg 51 rey 0

or 61 62

The Jacobian is then given as

det(J(61,62)) = s1(—rs1)(c1) det(J(02)) —reicicr det(J(62))
= —r2c1(sf —}—C%) = —72C1 (6-16)
In computing this determinant we made use of the fact that if a column of a matrix A
is multiplied by a scalar s, then the resulting determinant is s det(A). We also relied

on the fact that the (3,1)-minor of J(61,62), obtained by deleting row 3 and column
1 is actually J(03) with the first column multiplied by —rs; andthe second column
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multiplied by ¢;. Likewise, the (3, 2)-minor of J(601,65)) is J(62) with both the columns
multiplied by ¢;.

The volume of the hypersphere for d = 3 is obtained via a triple integral with
r>0,—m/2<6; <7m/2,and 0 <6 <27

vol(S3(r)) =/f/‘det(J(01,92))‘ dr d6, dbs

r 01 6O
r w/2 2w r /2 2
=/ / fr%osel dr do6, dOg:/r2 dr / cos@ldélfdég
0 —m/2 0 0 —/2 0
31" /2 2t 3 4
= —| -sin6; O] =—-22m=—nr? (6.17)
0 —n/2 0 3 3

Volume in d Dimensions

Before deriving a general expression for the hypersphere volume in d dimensions, let
us consider the Jacobian in four dimensions. Generalizing the polar coordinates from
three dimensions in Figure 6.10 to four dimensions, we obtain

X1 =r cosbq cosbycosbs =rcacacs
X9 = r cosfq cosbysinfs = rcicass
x3 =rcosfysinfy =rcis1

X4 =rsinf; =rsy

The Jacobian matrix is given as

GO UL C1C2C3 —TIS1CaC3 —FC1S2C3  FC1C283

ar 301 362 963 C1C283 —IS1C283 —rC18283 1cC1C203
J(Gl ’ 02 ’ 03) = ax. dx ax. ax. =
dx3  dx3  dx3  0x3 C152 —rs182 rcica 0
or 01 302 203
x4 x4 axq axq S1 rc 0 0

or 01 302 203

Utilizing the Jacobian in three dimensions [Eq. (6.16)], the Jacobian in four dimensions
is given as

det(J (01, 62,03)) = s1(—rs1)(c1)(c1)det(J(02,63)) —rei(cr)(cr)(c1) det(J(62,63))

3,22 3.4 3.2, (2, .2 3.2
=rosjcica+rocico =r’cica(sy + ) =rcica

Jacobian in d Dimensions By induction, we can obtain the d-dimensional Jacobian
as follows:

det(J (01,02, ...,04-1)) = (= 1)r?1cd™2c873 ey s
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The volume of the hypersphere is given by the d-dimensional integral with r > 0,
—n/2<6;,<m/2foralli=1,...,d—2,and 0 <6, 1 <2m:

Vol(Sd(r))zf//... f ‘det(J(@l,Qg,...,Qd,l))‘drd@l dby...d0y +

ro01 62 Od—1

r /2 /2 2
= f r?ldr / c{2dby ... f Ca_2dbBy_o / dby 1 (6.18)
0 —n/2 —n/2 0
Consider one of the intermediate integrals:
/2 7/2
/ (cosB)cdh =2 / cost 6d6 (6.19)
—7/2 0

Let us substitute u = cos?#, then we have 6 = cos™!(x'/?), and the Jacobian is
a0 1
5= _ L gy 6.20
ou - 2" 4w (6.20)
Substituting Eq. (6.20) in Eq. (6.19), we get the new integral:

/2 1
2/005"9510:/u(k’lw(l—u)’lmdu
0 0
1 1
_ <k+1 l)zr kT)F(§) (6.21)
2 2 r(5+1)

where B(a, 8) is the beta function, given as
1
B(a, B) =/u“*1(1—u)ﬂ*1du
0

and it can be expressed in terms of the gamma function [Eq. (6.6)] via the identity
F(@)I'(B)
F(a+B)

Using the fact that I'(1/2) = /7, and I'(1) = 1, plugging Eq. (6.21) into Eq. (6.18),
we get

B(a. ) =

P T (ST (3) T (452)T
1(S = — 2 2 2
R R ) R = I
ar (1)
ir (g

which matches the expression in Eq. (6.4).
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6.8 FURTHER READING

For an introduction to the geometry of d-dimensional spaces see Kendall (1961) and
also Scott (1992, Section 1.5). The derivation of the mean distance for the multivariate
normal is from MacKay (2003, p. 130).

Kendall, M. G. (1961). A Course in the Geometry of n Dimensions. New York: Hafner.
MacKay, D. J. (2003). Information Theory, Inference and Learning Algorithms.

New York: Cambridge University Press.

Scott, D. W. (1992). Multivariate Density Estimation: Theory, Practice, and

Visualization. New York: John Wiley & Sons.

6.9 EXERCISES

Q1.

Q2.

Q3.

Q4.

Given the gamma function in Eq. (6.6), show the following:
(a) T(1)=1

(b) T(3)=v7

(¢) ') =(¢—DHI'(e —1)

Show that the asymptotic volume of the hypersphere S;(r) for any value of radius r
eventually tends to zero as d increases.

The ball with center ¢ € RY and radius r is defined as
By(c,r) = {xeRY | 8(x,c) <}

where §(x, c) is the distance between x and c, which can be specified using the L,-norm:

J 5
Ly(x,c) = (Z |xi —cm’)
i=1

where p # 0 is any real number. The distance can also be specified using the
Loo-norm:
Loo(x, ¢) = max{|x; —¢; |}
1

Answer the following questions:

(a) For d =2, sketch the shape of the hyperball inscribed inside the unit square, using
the L,-distance with p = 0.5 and with center ¢ = (0.5, 0.5)T.

(b) With d =2 and ¢ = (0.5,0.5)T, using the Leo-norm, sketch the shape of the ball of
radius r = 0.25 inside a unit square.

(¢) Compute the formula for the maximum distance between any two points in
the unit hypercube in d dimensions, when using the L,-norm. What is the
maximum distance for p =0.5 when d =27 What is the maximum distance for the
Loo-norm?

Consider the corner hypercubes of length € < 1 inside a unit hypercube. The

2-dimensional case is shown in Figure 6.11. Answer the following questions:

(a) Let € =0.1. What is the fraction of the total volume occupied by the corner cubes
in two dimensions?
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Q5.
Q6.

QT.

High-dimensional Data

Figure 6.11. For Q4.

(b) Derive an expression for the volume occupied by all of the corner hypercubes of
length € <1 as a function of the dimension d. What happens to the fraction of the
volume in the corners as d — 007

(c) What is the fraction of volume occupied by the thin hypercube shell of width € <1
as a fraction of the total volume of the outer (unit) hypercube, as d — co? For
example, in two dimensions the thin shell is the space between the outer square
(solid) and inner square (dashed).

Prove Eq. (6.14), that is, limg_, o P (XTX < —2ln(a)) — 0, for any « € (0,1) and x e RY.

Consider the conceptual view of high-dimensional space shown in Figure 6.4. Derive
an expression for the radius of the inscribed circle, so that the area in the spokes
accurately reflects the difference between the volume of the hypercube and the inscribed
hypersphere in d dimensions. For instance, if the length of a half-diagonal is fixed at 1,

then the radius of the inscribed circle is % in Figure 6.4a.

Consider the unit hypersphere (with radius r = 1). Inside the hypersphere inscribe a
hypercube (i.e., the largest hypercube you can fit inside the hypersphere). An example
in two dimensions is shown in Figure 6.12. Answer the following questions:

Figure 6.12. For Q7.

(a) Derive an expression for the volume of the inscribed hypercube for any given
dimensionality d. Derive the expression for one, two, and three dimensions, and
then generalize to higher dimensions.
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(b) What happens to the ratio of the volume of the inscribed hypercube to the volume
of the enclosing hypersphere as d — 007 Again, give the ratio in one, two and three
dimensions, and then generalize.

Q8. Assume that a unit hypercube is given as [0, 1]¢, that is, the range is [0, 1] in each
dimension. The main diagonal in the hypercube is defined as the vector from (0,0) =

d—1 d—1
—— ——
©,...,0,0) to (1,1) = (1,...,1,1). For example, when d = 2, the main diagonal goes
from (0, 0) to (1,1). On the other hand, the main anti-diagonal is defined as the vector

d—1 d—1

from (1,0)=(1,...,1,0) to (0,1)=(0,...,0, 1) For example, for d =2, the anti-diagonal

is from (1, 0) to (0, 1).

(a) Sketch the diagonal and anti-diagonal in d = 3 dimensions, and compute the angle
between them.

(b) What happens to the angle between the main diagonal and anti-diagonal as d — 00.
First compute a general expression for the d dimensions, and then take the limit
as d — 00.

Q9. Draw a sketch of a hypersphere in four dimensions.
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We saw in Chapter 6 that high-dimensional data has some peculiar characteristics,
some of which are counterintuitive. For example, in high dimensions the center of
the space is devoid of points, with most of the points being scattered along the
surface of the space or in the corners. There is also an apparent proliferation of
orthogonal axes. As a consequence high-dimensional data can cause problems for
data mining and analysis, although in some cases high-dimensionality can help, for
example, for nonlinear classification. Nevertheless, it is important to check whether
the dimensionality can be reduced while preserving the essential properties of the full
data matrix. This can aid data visualization as well as data mining. In this chapter
we study methods that allow us to obtain optimal lower-dimensional projections of
the data.

7.1 BACKGROUND

Let the data D consist of n points over d attributes, that is, it is an n x d matrix,

given as
/ | X; Xy - X d\
X1 X11 X12 ot X4
D=| X2 X21 X2 -t X2g
Xn Xnl Xn2 et Xnd
Each point x; = (xi1,Xj2,...,Xiq)T is a vector in the ambient d-dimensional vector
space spanned by the d standard basis vectors eq,eo,...,e;, where e; corresponds to

the ith attribute X;. Recall that the standard basis is an orthonormal basis for the data
space, that is, the basis vectors are pairwise orthogonal, el'e; = 0, and have unit length
lle:ll =1.

As such, given any other set of d orthonormal vectors uj, us, ..., u,, with uiTuj =0
and |u;|| =1 (or uf

i

u; = 1), we can re-express each point x as the linear combination
X=aju; +asug + - +azuy (7.1)

184
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where the vector a= (a1,das,...,a;)" represents the coordinates of x in the new basis.
The above linear combination can also be expressed as a matrix multiplication:

x=Ua (7.2)
where U is the d x d matrix, whose ith column comprises the ith basis vector u;:

U=lu uwu - w
[ |

The matrix U is an orthogonal matrix, whose columns, the basis vectors, are
orthonormal, that is, they are pairwise orthogonal and have unit length

1 ifi=j
T A
0 ifis#j
Because U is orthogonal, this means that its inverse equals its transpose:
Ut=U"
which implies that UTU =1, where I is the d x d identity matrix.
Multiplying Eq. (7.2) on both sides by U7 yields the expression for computing the
coordinates of x in the new basis
UTx=U"Ua
a=UTx (7.3)
Example 7.1. Figure 7.1a shows the centered Iris dataset, with n = 150 points, in the

d = 3 dimensional space comprising the sepal length (X;), sepal width (Xs3), and
petal length (X3) attributes. The space is spanned by the standard basis vectors

1 0 0
el = 0 €y = 1 €3 = 0
0 0 1

Figure 7.1b shows the same points in the space comprising the new basis vectors

—0.390 —0.639 —0.663
u = 0.089 up = | —0.742 us = 0.664
—0.916 0.200 0.346

For example, the new coordinates of the centered point x = (—0.343, —0.754,
0.241)T can be computed as

—0.390 0.089 —-0.916\ [/—0.343 —0.154
a=UTx=|-0.639 —0.742 0.200 | | —0.754 | = 0.828
—0.663 0.664 0.346 0.241 —0.190

One can verify that x can be written as the linear combination

x = —0.154u; + 0.828uz — 0.190u3
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.\V 7

A —

\

(a) Original Basis (b) Optimal Basis

Figure 7.1. Iris data: optimal basis in three dimensions.

Because there are potentially infinite choices for the set of orthonormal basis
vectors, one natural question is whether there exists an optimal basis, for a suitable
notion of optimality. Further, it is often the case that the input dimensionality d is
very large, which can cause various problems owing to the curse of dimensionality (see
Chapter 6). It is natural to ask whether we can find a reduced dimensionality subspace
that still preserves the essential characteristics of the data. That is, we are interested
in finding the optimal r-dimensional representation of D, with r <« d. In other words,
given a point x, and assuming that the basis vectors have been sorted in decreasing
order of importance, we can truncate its linear expansion [Eq. (7.1)] to just r terms,
to obtain

X' =aju +asuz + - +au, =Za;ui (7.4)
i=1

Here %’ is the projection of x onto the first r basis vectors, which can be written in
matrix notation as follows:

| | | as
X=lwy uw - u | =TU,a, (7.5)

ar
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where U, is the matrix comprising the first r basis vectors, and a, is vector comprising
the first r coordinates. Further, because a = UTx from Eq. (7.3), restricting it to the
first r terms, we get

a, =Urx (7.6)

Plugging this into Eq. (7.5), the projection of x onto the first r basis vectors can be
compactly written as

X =U,U'x=P,x (7.7)

where P, = U,UT is the orthogonal projection matrix for the subspace spanned by
the first r basis vectors. That is, P, is symmetric and P? = P,. This is easy to verify
because PrT = (U,U,T)T = U,U;r =P,, and Pf = (U,U;F)(U,U;r) = U,U,T =P,, where we
use the observation that UrTU, =14, the r x r identity matrix. The projection matrix
P, can also be written as the decomposition

P, =0, U =) uu| (7.8)
i=1

From Egs. (7.1) and (7.4), the projection of x onto the remaining dimensions
comprises the error vector

d
€= E a,-u,-:x—x’

i=r+1

It is worth noting that that x" and € are orthogonal vectors:

r d
xTe= E E a,-aju?uj =0

i=1 j=r+1

This is a consequence of the basis being orthonormal. In fact, we can make an even
stronger statement. The subspace spanned by the first r basis vectors

S, =span(uy,...,u,)
and the subspace spanned by the remaining basis vectors
Sa—r =span (U41,...,1q)

are orthogonal subspaces, that is, all pairs of vectors x € S, and y € S;_, must be
orthogonal. The subspace S,_, is also called the orthogonal complement of S,.

Example 7.2. Continuing Example 7.1, approximating the centered point x =
(—0.343, —0.754,0.241)T by using only the first basis vector u; = (—0.390,0.089,
—0.916)T, we have
0.060
X/ =aju; = —0.154111 =1 -0.014
0.141
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The projection of x on u; could have been obtained directly from the projection
matrix

—0.390
Pi=wuj = 0.089|(-0.390 0.089 —0.916)
—0.916

0.152 —-0.035  0.357
—0.035  0.008 —0.082
0.357 —0.082  0.839

That is
0.060
X =Pix=1{-0.014
0.141
The error vector is given as
—0.40
€ =asus+azsuz=x—x'=| —0.74
0.10
One can verify that x" and € are orthogonal, i.e.,
—0.40
xTe=(0.060 —0.014 0.141)| —-0.74| =0
0.10

The goal of dimensionality reduction is to seek an r-dimensional basis that gives
the best possible approximation x; over all the points x; € D. Alternatively, we may
seek to minimize the error €; =x; —x! over all the points.

7.2 PRINCIPAL COMPONENT ANALYSIS

Principal Component Analysis (PCA) is a technique that seeks a r-dimensional basis
that best captures the variance in the data. The direction with the largest projected
variance is called the first principal component. The orthogonal direction that captures
the second largest projected variance is called the second principal component, and
so on. As we shall see, the direction that maximizes the variance is also the one that
minimizes the mean squared error.

7.2.1 Best Line Approximation

We will start with r = 1, that is, the one-dimensional subspace or line u that best
approximates D in terms of the variance of the projected points. This will lead to the
general PCA technique for the best 1 <r < d dimensional basis for D.
Without loss of generality, we assume that u has magnitude |uf? =u
otherwise it is possible to keep on increasing the projected variance by simply

Tu=1;
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increasing the magnitude of u. We also assume that the data has been centered so
that it has mean pu = 0.
The projection of x; on the vector u is given as

T
’ u-X; T
X; = u:(u x,-)u:a,-u
T
u-u

where the scalar
a; = llTX,'

gives the coordinate of x; along u. Note that because the mean point is g =0, its
coordinate along u is u, =0.

We have to choose the direction u such that the variance of the projected points
is maximized. The projected variance along u is given as

n

1
2_ — L 2
Gu—nE (ai — ptu)

i=1

1 n
=-> @"x)?
n i=1

1

n
== ZuT (xixlT) u
i=1

n-

1 n
N R e W
=u (n ;X,Xl )u
=u'Zu (7.9)

where X is the covariance matrix for the centered data D.

To maximize the projected variance, we have to solve a constrained optimization
problem, namely to maximize o2 subject to the constraint that u™u = 1. This can
be solved by introducing a Lagrangian multiplier « for the constraint, to obtain the
unconstrained maximization problem

maxJ(w) =u'Tu—a@Tu—1) (7.10)
Setting the derivative of J(u) with respect to u to the zero vector, we obtain
ad
—Jw) =0
ou (u)
ad
— (uTZu — ot(uTu — 1)) =0
ou
2¥u—20u=0
Yu=au (7.11)

This implies that « is an eigenvalue of the covariance matrix X, with the associated
eigenvector u. Further, taking the dot product with u on both sides of Eq. (7.11) yields

uTTu=uTau
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From Eq. (7.9), we then have

2—q (7.12)

we should thus choose the largest eigenvalue
of X. In other words, the dominant eigenvector u; specifies the direction of most

To maximize the projected variance o2,
variance, also called the first principal component, that is, u=u;. Further, the largest
eigenvalue A; specifies the projected variance, that is, 02 = =1;.

Minimum Squared Error Approach

We now show that the direction that maximizes the projected variance is also the one
that minimizes the average squared error. As before, assume that the dataset D has
been centered by subtracting the mean from each point. For a point x; € D, let x!
denote its projection along the direction u, and let €; =x; —x} denote the error vector.
The mean squared error (MSE) optimization condition is defined as

1 n
MSE() =~ lle;|* (7.13)
i=1

1

n
2
= -2 lxi—xl
i=1

1 n
== xi—x) (- x)
i=1

n-

1 n
== Z(Hxi 12 —2x;"x) + (x;)Tx;) (7.14)

i
Noting that x; = (uTx;)u, we have
l¢ 2 T, T T T T
— Z Ixi]* —2x; (u x,-)u~|—((u X,-)u) (u"x;)u
i=1

n-

_1 Z(||x,~ 12 = 200" (T w + <uTXf>(XfT“’“T“>
i=1

n -~
1 . 2 T T
==Y [ Ix1? = @ x)xw)
n i=1
1 1
==Y Ixil? == u"xxHu
n“ n-
i=1 i=1
1 n 1 n
== I )? —u” (— Zx,-x;f> u
n i=1 n i=1

n 12
s sy (7.15)
i=1

n
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Note that by Eq. (1.4) the total variance of the centered data (i.e., with u =0) is
given as

1 n 1 n
varD)=—3 lxi —0l* = =3 x|
i=1 i=1

Further, by Eq. (2.28), we have

d
var(D) =tr(X) =) o/

i=1
Thus, we may rewrite Eq. (7.15) as

d
MSE(u) = var(D) —uTTu= Zaf —uTzu
i=1
Because the first term, var(D), is a constant for a given dataset D, the vector u that
minimizes MSE(u) is thus the same one that maximizes the second term, the projected
variance u' Xu. Because we know that uj, the dominant eigenvector of ¥, maximizes
the projected variance, we have

MSE(uy) = var (D) — ulTZul =var (D) — ulTklul =wvar(D) — Ay (7.16)

Thus, the principal component u;, which is the direction that maximizes the projected
variance, is also the direction that minimizes the mean squared error.

Example 7.3. Figure 7.2 shows the first principal component, that is, the best
one-dimensional approximation, for the three dimensional Iris dataset shown in
Figure 7.1a. The covariance matrix for this dataset is given as

0.681 —0.039 1.265
X =1-0.039 0.187 —0.320
1.265 —0.320 3.092

The variance values o/ for each of the original dimensions are given along the main
diagonal of X. For example, 07 = 0.681, 0 = 0.187, and o = 3.092. The largest
eigenvalue of X is A; = 3.662, and the corresponding dominant eigenvector is u; =
(—0.390,0.089, —0.916) ™. The unit vector u; thus maximizes the projected variance,
which is given as J(u;) = o = A1 = 3.662. Figure 7.2 plots the principal component
u;. It also shows the error vectors €;, as thin gray line segments.
The total variance of the data is given as
1

1 n
var(D) = > Il = oo 594.04 = 3.96
i=1

We can also directly obtain the total variance as the trace of the covariance matrix:
var(D) =tr(X) =of + 05 + 04 =0.681+0.187+3.092= 3.96
Thus, using Eq. (7.16), the minimum value of the mean squared error is given as

MSE(u1) = var(D) — A1 = 3.96 — 3.662 = 0.298
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/

Z__________________________\A/

\

Figure 7.2. Best one-dimensional or line approximation.

7.2.2 Best 2-dimensional Approximation

We are now interested in the best two-dimensional approximation to D. As before,
assume that D has already been centered, so that p = 0. We already computed the
direction with the most variance, namely u;, which is the eigenvector corresponding
to the largest eigenvalue A; of X. We now want to find another direction v, which also
maximizes the projected variance, but is orthogonal to u;. According to Eq. (7.9) the
projected variance along v is given as

03 =v'Zv
We further require that v be a unit vector orthogonal to u;, that is,

VTu1 =0

viv=1

The optimization condition then becomes
maxJ(v) =vIEZv—avTv—-1)— B u; —0) (7.17)
A%
Taking the derivative of J(v) with respect to v, and setting it to the zero vector, gives

2% v —2av — fu; =0 (7.18)
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If we multiply on the left by ul we get
2ul v — 2auv — fufuy =0
2vT¥u; — B =0, which implies that
,B = 2VT)\.1111 = 2)\1VT111 =0
In the derivation above we used the fact that uf £v=vTXuy, and that v is orthogonal
to up. Plugging B =0 into Eq. (7.18) gives us
2¥%v —2av=0
Yv=oav
2 =

This means that v is another eigenvector of X. Also, as in Eq. (7.12), we have o

a. To maximize the variance along v, we should choose o = A2, the second largest
eigenvalue of X, with the second principal component being given by the corresponding
eigenvector, that is, v =us.

Total Projected Variance
Let Us be the matrix whose columns correspond to the two principal components,
given as

Up=|w w

Given the point x; € D its coordinates in the two-dimensional subspace spanned by u;
and us can be computed via Eq. (7.6), as follows:

a; = UgX;

Assume that each point x; € R? in D has been projected to obtain its coordinates
a; € R?, yielding the new dataset A. Further, because D is assumed to be centered, with
i =0, the coordinates of the projected mean are also zero because Ugu = UgO =0.
The total variance for A is given as

1 n
var(A)=—3lla; = 0||”
i=1

1

=13 (UFx)" (UF)

= ; :
= l ZXF (U2U2T)X,'
n
i=1

1 n
=- E xPox; (7.19)
n
i=1

where P is the orthogonal projection matrix [Eq. (7.8)] given as

T T T
Py =U2U2 =uiu; +ugl,y
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Substituting this into Eq. (7.19), the projected total variance is given as

1 n
var(A) == § X, Pox; (7.20)
n
i=1

1 n

T T T

= E X; (u1u1 +u2u2)x,~
i=1

1« 1w
=~ > x) O ) 4 = D (g x) (5 o)
i=1 i=1

=
=u] Zu; +u; Tuy (7.21)

Because u; and us are eigenvectors of X, we have Xu; = Aju; and Xuy = Agug, so that
var(A) = u?Zul + ugZug = u?klul + ugkgug = A1+ Ao (7.22)

Thus, the sum of the eigenvalues is the total variance of the projected points, and the
first two principal components maximize this variance.

Mean Squared Error
We now show that the first two principal components also minimize the mean square
error objective. The mean square error objective is given as

MsB= 3 -

1 n
= Z(ux,- 12 —2xTx! + (x;)Tx;), using Eq. (7.14)
n
i=1
1 n
=var(D) + - Z (—2x; Pox; + (Pox;) 'Pox;) , using Eq. (7.7) that x| = Pox;
n
i=1
=var(D) — 1 2": (X-TP2Xi)
n 1

i=1

= var(D) —var(A), using Eq. (7.20) (7.23)

Thus, the MSE objective is minimized precisely when the total projected variance
var(A) is maximized. From Eq. (7.22), we have

MSE = var(D) - )\1 — )\.2

Example 7.4. For the Iris dataset from Example 7.1, the two largest eigenvalues are
A1 =3.662, and Ay = 0.239, with the corresponding eigenvectors:

—0.390 —0.639
up = 0.089 ug = | —0.742
—0.916 0.200



Principal Component Analysis 195

The projection matrix is given as

[ T
Py = UQUrzr =|u us ( E}F) =S ululT + ugurzr
[ 2
0.152 —0.035 0.357 0.408 0.474 —0.128
=1 -0.035 0.008 —0.082 | + 0.474 0.551 —0.148
0.357 —0.082 0.839 —0.128 —0.148 0.04

0.560  0.439  0.229
=10439 0.558 —0.230
0.229 -0.230  0.879

Thus, each point x; can be approximated by its projection onto the first two principal
components x; = Pyx;. Figure 7.3a plots this optimal 2-dimensional subspace spanned
by u; and us. The error vector €; for each point is shown as a thin line segment. The
gray points are behind the 2-dimensional subspace, whereas the white points are in
front of it. The total variance captured by the subspace is given as

A1+ 2o =3.662+40.239 =3.901
The mean squared error is given as
MSE = var(D) — 21 — A2 =3.96 — 3.662 — 0.239 = 0.059

Figure 7.3b plots a nonoptimal 2-dimensional subspace. As one can see the optimal
subspace maximizes the variance, and minimizes the squared error, whereas the
nonoptimal subspace captures less variance, and has a high mean squared error value,
which can be pictorially seen from the lengths of the error vectors (line segments).
In fact, this is the worst possible 2-dimensional subspace; its MSE is 3.662.

7.2.3 Best r-dimensional Approximation

We are now interested in the best r-dimensional approximation to D, where 2 <r <d.
Assume that we have already computed the first j — 1 principal components or
eigenvectors, up,us,...,u;_1, corresponding to the j —1 largest eigenvalues of X,
for 1 <j <r. To compute the jth new basis vector v, we have to ensure that it
is normalized to unit length, that is, v'v = 1, and is orthogonal to all previous
components 1, i.e., ulv =0, for 1 <i < j. As before, the projected variance along

v is given as

03 =vIyv

Combined with the constraints on v, this leads to the following maximization problem
with Lagrange multipliers:
j-1
maxJ(v) = viZv—awTv—1)— Zﬁ,-(u;fv —0)

i=1
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Figure 7.3. Best two-dimensional approximation.

Taking the derivative of J(v) with respect to v and setting it to the zero vector gives

j—1
2EV—2aV—jZ:ﬁ,~u,- =0 (7.24)
i=1
If we multiply on the left by u/l, for 1 <k < j, we get
j-1
20 Tv — 2u; v — Brud vy — Z,Biu,zrui =0
2
WISy — B =0

,Bk = 2VT)\.kuk = 2kvauk =0

where we used the fact that Xu, = A uy, as uy is the eigenvector corresponding to the
kth largest eigenvalue A; of X. Thus, we find that 8; =0 for all i < j in Eq. (7.24),
which implies that

Yv=av

To maximize the variance along v, we set « = A;, the jth largest eigenvalue of X, with
v =1; giving the jth principal component.
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In summary, to find the best r-dimensional approximation to D, we compute
the eigenvalues of X. Because X is positive semidefinite, its eigenvalues must all be
non-negative, and we can thus sort them in decreasing order as follows:

A=A > A > gy - >0 >0

We then select the r largest eigenvalues, and their corresponding eigenvectors to form
the best r-dimensional approximation.

Total Projected Variance
Let U, be the r-dimensional basis vector matrix

Ur = U—l u2 “ee ur

with the projection matrix given as

P, =U,U" = Xr:u,-u;f

i=1

Let A denote the dataset formed by the coordinates of the projected points in the
r-dimensional subspace, that is, a;, = Ulx;, and let x| = P,x; denote the projected
point in the original d-dimensional space. Following the derivation for Egs. (7.19),
(7.21), and (7.22), the projected variance is given as

var(A) = % Xn:XFPrX,- = Xr:uFZui = Xr:)\i
i=1 i=1 i=1

Thus, the total projected variance is simply the sum of the r largest eigenvalues of X.

Mean Squared Error
Based on the derivation for Eq.(7.23), the mean squared error objective in
r dimensions can be written as

ase= 3 x|
=var (D) —var(A)

=var (D) — Zu?Zui

i=1
=var(D) — Z)\,-
i=1

The first r-principal components maximize the projected variance var(A), and thus
they also minimize the MSE.
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ALGORITHM 7.1. Principal Component Analysis

PCA (D,«):
1 p=13" % // compute mean
2 Z=D—1-u" // center the data
3 X= % (ZTZ) // compute covariance matrix
4 (M, A2, ..., Ay) =eigenvalues(X) // compute eigenvalues
5 U:(u1 ug  --- ud) = eigenvectors(X) // compute eigenvectors

f@r)= gfflii, forall r =1,2,...,d // fraction of total variance
i=1 %

7 Choose smallest r so that f(r) >« // choose dimensionality
8 U,:(ul Ug - u,) // reduced basis

6

9 A={a;|a;= U;rxi,for i=1,...,n} // reduced dimensionality data

Total Variance
Note that the total variance of D is invariant to a change in basis vectors. Therefore,
we have the following identity:

d d
var(D) = Zaiz = ZA,-
i=1 i=1

Choosing the Dimensionality

Often we may not know how many dimensions, r, to use for a good approximation.
One criteria for choosing r is to compute the fraction of the total variance captured
by the first r principal components, computed as

IR R Ry YD AP VR SRy (7.25)
M AAst -t Ay Z?:l)‘i var (D) .

fr)

Given a certain desired variance threshold, say o, starting from the first principal
component, we keep on adding additional components, and stop at the smallest value
r, for which f(r) > «. In other words, we select the fewest number of dimensions such
that the subspace spanned by those r dimensions captures at least «a fraction of the
total variance. In practice, « is usually set to 0.9 or higher, so that the reduced dataset
captures at least 90% of the total variance.

Algorithm 7.1 gives the pseudo-code for the principal component analysis
algorithm. Given the input data D e R"*¢, it first centers it by subtracting the
mean from each point. Next, it computes the eigenvectors and eigenvalues of the
covariance matrix X. Given the desired variance threshold «, it selects the smallest
set of dimensions r that capture at least o fraction of the total variance. Finally, it
computes the coordinates of each point in the new r-dimensional principal component
subspace, to yield the new data matrix A € R"*".
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Example 7.5. Given the 3-dimensional Iris dataset in Figure 7.la, its covariance
matrix is

0.681 —0.039 1.265
X =1-0.039 0.187 —0.320
1.265 —0.32 3.092

The eigenvalues and eigenvectors of X are given as

A1 =3.662 Ao =0.239 A3 =0.059
—0.390 —0.639 —0.663

u = 0.089 up = | —0.742 uz = 0.664
—0.916 0.200 0.346

The total variance is therefore A1 +As+ i3 =3.662+0.239+0.059 = 3.96. The optimal
3-dimensional basis is shown in Figure 7.1b.

To find a lower dimensional approximation, let @ = 0.95. The fraction of total
variance for different values of r is given as

r 1 2 3
f(@r) 1] 0.925 | 0.985 | 1.0

For example, for r = 1, the fraction of total variance is given as f(1) = % =
0.925. Thus, we need at least r =2 dimensions to capture 95% of the total variance.
This optimal 2-dimensional subspace is shown as the shaded plane in Figure 7.3a.
The reduced dimensionality dataset A is shown in Figure 7.4. It consists of the
point coordinates a; = UJx; in the new 2-dimensional principal components basis

comprising u; and us.

7.2.4 Geometry of PCA

Geometrically, when r =d, PCA corresponds to a orthogonal change of basis, so that
the total variance is captured by the sum of the variances along each of the principal
directions uj,us,...,uy, and further, all covariances are zero. This can be seen by
looking at the collective action of the full set of principal components, which can be
arranged in the d x d orthogonal matrix

U= u; U2 o Uy

with U~ =UT.
Each principal component u; corresponds to an eigenvector of the covariance
matrix X, that is,

Yu,=Au foralll <i<d
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Figure 7.4. Reduced dimensionality dataset: Iris principal components.

which can be written compactly in matrix notation as follows:

X u; Ug -+ Uy | = )\.1111 )\2112 Adud
I | | I I
0 )‘f2 0
u=u|. .
0 0 )‘-d
TU=UA (7.26)

If we multiply Eq. (7.26) on the left by U~! = UT we obtain

A 0 -0
0 Ay -+ 0
UTzU=UTUA=A= ) )
0 0 - Mg

This means that if we change the basis to U, we change the covariance matrix X to a
similar matrix A, which in fact is the covariance matrix in the new basis. The fact that
A is diagonal confirms that after the change of basis, all of the covariances vanish,
and we are left with only the variances along each of the principal components, with
the variance along each new direction u; being given by the corresponding eigenvalue
A

It is worth noting that in the new basis, the equation

'y x=1 (7.27)
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defines a d-dimensional ellipsoid (or hyper-ellipse). The eigenvectors u; of X, that is,

the principal components, are the directions for the principal axes of the ellipsoid. The

square roots of the eigenvalues, that is, «/A;, give the lengths of the semi-axes.
Multiplying Eq. (7.26) on the right by U™t = UT, we have

X =UAU"T (7.28)
Assuming that X is invertible or nonsingular, we have

T =UAUD " = (U AU =UA U

where
1
vy 0 0
1
Al 0 ey 0
1
o 0 ... =

Substituting ! in Eq. (7.27), and using the fact that x = Ua from Eq. (7.2), where

a=(a1,as,...,a;)" represents the coordinates of x in the new basis, we get
' ix=1
(a"UT)UA'UT (Ua) =1
alAla=1

i=1 !

which is precisely the equation for an ellipse centered at 0, with semi-axes lengths +/A;.
Thus xT' X 'x =1, or equivalently aT A~'a =1 in the new principal components basis,
defines an ellipsoid in d-dimensions, where the semi-axes lengths equal the standard
deviations (squared root of the variance, +/A;) along each axis. Likewise, the equation
xTEIx =y, or equivalently aT A~ta =, for different values of the scalar s, represents
concentric ellipsoids.

Example 7.6. Figure 7.5b shows the ellipsoid x*¥X 'x = aTA 'a =1 in the new
principal components basis. Each semi-axis length corresponds to the standard
deviation +/A; along that axis. Because all pairwise covariances are zero in the
principal components basis, the ellipsoid is axis-parallel, that is, each of its axes
coincides with a basis vector.

On the other hand, in the original standard d-dimensional basis for D, the
ellipsoid will not be axis-parallel, as shown by the contours of the ellipsoid in
Figure 7.5a. Here the semi-axis lengths correspond to half the value range in each
direction; the length was chosen so that the ellipsoid encompasses most of the points.
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7.3 KERNEL PRINCIPAL COMPONENT ANALYSIS

Principal component analysis can be extended to find nonlinear “directions” in the
data using kernel methods. Kernel PCA finds the directions of most variance in the
feature space instead of the input space. That is, instead of trying to find linear
combinations of the input dimensions, kernel PCA finds linear combinations in the

/
v

\

S

=

(b) Axis parallel ellipsoid in principal components basis

Figure 7.5. Iris data: standard and principal components basis in three dimensions.
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high-dimensional feature space obtained as some nonlinear transformation of the input
dimensions. Thus, the linear principal components in the feature space correspond to
nonlinear directions in the input space. As we shall see, using the kernel trick, all
operations can be carried out in terms of the kernel function in input space, without
having to transform the data into feature space.

Example 7.7. Consider the nonlinear Iris dataset shown in Figure 7.6, obtained via a
nonlinear transformation applied on the centered Iris data. In particular, the sepal
length (A;) and sepal width attributes (As) were transformed as follows:

X1 =0.2A7+A3+0.1A:A,
X2 = A2

The points show a clear quadratic (nonlinear) relationship between the two variables.
Linear PCA yields the following two directions of most variance:

A =0.197 Ao =0.087
0y = <0.301) 0y = (—0.953>
0.953 0.301

These two principal components are illustrated in Figure 7.6. Also shown in the figure
are lines of constant projections onto the principal components, that is, the set of
all points in the input space that have the same coordinates when projected onto
u; and us, respectively. For instance, the lines of constant projections in Figure 7.6a
correspond to the solutions of ulx = s for different values of the coordinate s.
Figure 7.7 shows the coordinates of each point in the principal components space
comprising u; and us. It is clear from the figures that u; and uy do not fully capture

the nonlinear relationship between X; and X5. We shall see later in this section that
kernel PCA is able to capture this dependence better.

Let ¢ correspond to a mapping from the input space to the feature space. Each
point in feature space is given as the image ¢(x;) of the point x; in input space. In
the input space, the first principal component captures the direction with the most
projected variance; it is the eigenvector corresponding to the largest eigenvalue of the
covariance matrix. Likewise, in feature space, we can find the first kernel principal
component uy (with u?ul = 1), by solving for the eigenvector corresponding to the
largest eigenvalue of the covariance matrix in feature space:

Z¢u1 :Alul (729)

where X4, the covariance matrix in feature space, is given as
%= ancﬁ( ) (xi) " (7.30)
= — X; X; .
P i=1

Here we assume that the points are centered, that is, ¢ (x;) = ¢ (x;) — py, where u, is
the mean in feature space.
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Figure 7.7. Projection onto principal components.

Plugging in the expansion of X, from Eq. (7.30) into Eq. (7.29), we get

1 — T
;Z(b(xi)(l)(xi) up =AU
im1

(7.31)

1 n
=2 00 (¢ w) = haw

i=1
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n T
Z <m) o(xi) =
I’l)\.l

i=1

> ) =m (7.32)
i=1
where ¢; = % is a scalar value. From Eq. (7.32) we see that the best direction in

the feature space, uy, is just a linear combination of the transformed points, where the
scalars ¢; show the importance of each point toward the direction of most variance.
We can now substitute Eq. (7.32) back into Eq. (7.31) to get

n

1 n n
(; Z¢<x,->¢(x,-)T> Y o) | =r ) cbx)
i=1 i=1

j=1

1 n n n

=D Y b)) =1 Y eid(x)

et j=1 i=1

Do) Y G o) | =nra )] cidxi)
i=1

i=1 j=1

In the preceding equation, we can replace the dot product in feature space, namely
¢(x,-)T¢(Xj), by the corresponding kernel function in input space, namely K(x;,x;),
which yields

n

Z ¢(Xi)ZCjK(Xian) =niy Zci¢(Xi) (7.33)
im1

i=1 j=1

Note that we assume that the points in feature space are centered, that is, we assume
that the kernel matrix K has already been centered using Eq. (5.14):

1 1
K= I__lnxn K I__lnxn
n n

where I is the n x n identity matrix, and 1,, is the n x n matrix all of whose elements
are 1.

We have so far managed to replace one of the dot products with the kernel function.
To make sure that all computations in feature space are only in terms of dot products,
we can take any point, say ¢(x;) and multiply Eq. (7.33) by ¢(x;)T on both sides to
obtain

n

D 60T Y K x)) | =nr1 ) cid(x0) o (x)

i=1 j=1 i=1

n

Z K(Xk,X,')ZCjK(XivXj) =nk ZCiK(kaXi) (7.34)

i=1 j=1 i=1
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Further, let K; denote row i of the centered kernel matrix, written as the column
vector

K; = (K(x,x1) K(xi,x2) - K, %0) "
Let ¢ denote the column vector of weights
c=(c1ca - )"
We can plug K; and c into Eq. (7.34), and rewrite it as
ZK(xk, x)Kre=n1Klc
i=1

In fact, because we can choose any of the n points, ¢ (x;), in the feature space, to
obtain Eq. (7.34), we have a set of n equations:

ZK(Xl,X,-)KiTC =naKle
i=1
ZK(XQ,X,‘)K?C = nk1K2Tc
i=1

ZK(xn,x;)KiTc n)»lKnTc
i=1

We can compactly represent all of these n equations as follows:
K%c=nrKe
where K is the centered kernel matrix. Multiplying by K~! on both sides, we obtain

K 'K?c=n0 K 'Ke
Kc=nAic
Kc=mnc (7.35)
where n1 = nA1. Thus, the weight vector c¢ is the eigenvector corresponding to the
largest eigenvalue 1y of the kernel matrix K.
Once c is found, we can plug it back into Eq.(7.32) to obtain the first kernel

principal component u;. The only constraint we impose is that u; should be normalized
to be a unit vector, as follows:

u?ul =1

YD ) To) =1
i=1 j=1

cTKe=1
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Noting that Kc = nic from Eq. (7.35), we get

cTme)=1
mecle=1
1
llell* = —
n

However, because c is an eigenvector of K it will have unit norm. Thus, to ensure that

u; is a unit vector, we have to scale the weight vector ¢ so that its norm is |c|| = /%,

which can be achieved by multiplying ¢ by %

In general, because we do not map the input points into the feature space via ¢,
it is not possible to directly compute the principal direction, as it is specified in terms
of ¢ (x;), as seen in Eq. (7.32). However, what matters is that we can project any point
¢ (x) onto the principal direction uy, as follows:

n n

() =Y )P =D ciK(x;,x)
i=1 i=1
which requires only kernel operations. When x = x; is one of the input points, the
projection of ¢ (x;) onto the principal component u; can be written as the dot product

a=u;¢(x;) =K'ec (7.36)

where K; is the column vector corresponding to the ith row in the kernel matrix.
Thus, we have shown that all computations, either for the solution of the principal
component, or for the projection of points, can be carried out using only the kernel
function. Finally, we can obtain the additional principal components by solving for
the other eigenvalues and eigenvectors of Eq.(7.35). In other words, if we sort the
eigenvalues of K in decreasing order n; > ne > --- > 1, > 0, we can obtain the jth
principal component as the corresponding eigenvector c;, which has to be normalized so

that the norm is ||¢; | = /%, provided n; > 0. Also, because n; =nl;, the variance along
]

the jth principal component is given as A; = "7’ Algorithm 7.2 gives the pseudo-code

for the kernel PCA method.

Example 7.8. Consider the nonlinear Iris data from Example 7.7 with n = 150 points.
Let us use the homogeneous quadratic polynomial kernel in Eq. (5.8):

K, xj) = (X;FXJ‘)2
The kernel matrix K has three nonzero eigenvalues:
n = 31.0 No = 8.94 n3 = 2.76

A= 202067 Ao=-—P —0.0596 Az= - —0.0184
150 150 150

The corresponding eigenvectors ci, ¢z, and c3 are not shown because they lie in R5°.
Figure 7.8 shows the contour lines of constant projection onto the first three

kernel principal components. These lines are obtained by solving the equations u} x =
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ALGORITHM 7.2. Kernel Principal Component Analysis

KernelPCA (D,K,@):

1 {K(X,,X])} =1 // compute n xn kernel matrix

.....

=1-211,,,)Kd-1211,,,) // center the kernel matrix
(nl,ng,...,nd) —elgenvalues(K) // compute eigenvalues
(01 Cy - c,,) = eigenvectors(K) // compute eigenvectors

Tt W N

A= 77’ foralli=1,...,n // compute variance for each component

6 Ci= \/7 ciforalli=1,...,n // ensure that ulTu,- =1

fr) = ’ 1 ’ , forall r =1,2,...,d // fraction of total variance

8 Choose bmallest r so that f(r) >« // choose dimensionality
9 Crz(cl Cy e c,) // reduced basis
10 A={a;|a;= C?Ki,for i=1,...,n} // reduced dimensionality data

> i1 cijK(x;,x) = s for different projection values s, for each of the eigenvectors ¢; =
(i1, Ci2, ..., Cin)T of the kernel matrix. For instance, for the first principal component
this corresponds to the solutions x = (x1, x2) T, shown as contour lines, of the following
equation:

1.0426x7 +0.995x3 +0.914x1x5 = 5

for each chosen value of s. The principal components are also not shown in the figure,
as it is typically not possible or feasible to map the points into feature space, and
thus one cannot derive an explicit expression for u;. However, because the projection
onto the principal components can be carried out via kernel operations via Eq. (7.36),
Figure 7.9 shows the projection of the points onto the first two kernel principal
components, which capture ﬁ 83223 =93.5% of the total variance.
Incidentally, the use of a linear kernel K(x;,x;) = x x; yields exactly the same

principal components as shown in Figure 7.7.



Singular Value Decomposition 209

1.5

1.0

0.5 +

X2

—0.5

(a) A1 =0.2067 (b) A2 =0.0596

1.5
1.0 K<

Q

(e3¢ 0]
O \O

: O

@)
=X

w o
-05 0 05 10 15

Xy
() k3 =0.0184

(0]

Figure 7.8. Kernel PCA: homogeneous quadratic kernel.

7.4 SINGULAR VALUE DECOMPOSITION

Principal components analysis is a special case of a more general matrix decomposition
method called Singular Value Decomposition (SVD). We saw in Eq. (7.28) that PCA
yields the following decomposition of the covariance matrix:

¥ =UAU"T (7.37)
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Figure 7.9. Projected point coordinates: homogeneous quadratic kernel.

where the covariance matrix has been factorized into the orthogonal matrix U
containing its eigenvectors, and a diagonal matrix A containing its eigenvalues (sorted
in decreasing order). SVD generalizes the above factorization for any matrix. In
particular for an n x d data matrix D with n points and d columns, SVD factorizes D
as follows:

D=LAR" (7.38)

where L is a orthogonal n x n matrix, R is an orthogonal d x d matrix, and A is an
n xd “diagonal” matrix. The columns of L are called the left singular vectors, and the
columns of R (or rows of RT) are called the right singular vectors. The matrix A is
defined as

8 Ifi=j

AG, j) =
“D=1 Ifij

wherei=1,...,n and j=1,...,d. The entries A(i,i) = §; along the main diagonal of
A are called the singular values of D, and they are all non-negative. If the rank of D
is r <min(n,d), then there will be only r nonzero singular values, which we assume
are ordered as follows:

61 >8>-->6,>0

One can discard those left and right singular vectors that correspond to zero singular
values, to obtain the reduced SVD as

D=L,AR" (7.39)
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where L, is the n x r matrix of the left singular vectors, R, is the d x r matrix of
the right singular vectors, and A, is the r x r diagonal matrix containing the positive
singular vectors. The reduced SVD leads directly to the spectral decomposition of D,

given as
D=L,AR’
81 0 0\ /— T —
I Nlo & o|l— T —
=l b l, i
[ I : o
0 0 S, — 1, —

:81[11‘? + 82[21‘; + -4 8,l,r;r

Izr:&‘l,'r;r
i=1

The spectral decomposition represents D as a sum of rank one matrices of the form
(Sl-l,-r;r. By selecting the g largest singular values 61,42,...,8, and the corresponding
left and right singular vectors, we obtain the best rank g approximation to the original
matrix D. That is, if D, is the matrix defined as

then it can be shown that D, is the rank ¢ matrix that minimizes the expression
ID —Dyllr

where ||A||r is called the Frobenius Norm of the n x d matrix A, defined as

IAllF =

7.4.1 Geometry of SVD

In general, any n x d matrix D represents a linear transformation, D: R — R”, from
the space of d-dimensional vectors to the space of n-dimensional vectors because for
any x € R? there exists y € R” such that

Dx=y

The set of all vectors y € R" such that Dx =y over all possible x € R? is called the
column space of D, and the set of all vectors x € R?, such that DTy =x over all y e R”,
is called the row space of D, which is equivalent to the column space of DT. In other
words, the column space of D is the set of all vectors that can be obtained as linear
combinations of columns of D, and the row space of D is the set of allvectors that can
be obtained as linear combinations of the rows of D (or columns of DT). Also note
that the set of all vectors x € R?, such that Dx = 0 is called the null space of D, and
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finally, the set of all vectors y € R”, such that DTy =0 is called the left null space of
D.

One of the main properties of SVD is that it gives a basis for each of the four
fundamental spaces associated with the matrix D. If D has rank r, it means that
it has only r independent columns, and also only r independent rows. Thus, the r
left singular vectors I1,1s,...,1, corresponding to the r nonzero singular values of D in
Eq. (7.38) represent a basis for the column space of D. The remaining n —r left singular
vectors l,,1,...,l, represent a basis for the left null space of D. For the row space, the
r right singular vectors ri,rg,...,r, corresponding to the r non-zero singular values,
represent a basis for the row space of D, and the remaining d —r right singular vectors
r; (j=r+1,...,d), represent a basis for the null space of D.

Consider the reduced SVD expression in Eq. (7.39). Right multiplying both sides
of the equation by R, and noting that RrTR, =1,, where I, is the r x r identity matrix,
we have

DR, =L,AR'R,

DR, =L, A,
51 0 0
0 52 0
DRrZLr .
0 O Oy
(. | | | |
D ry TI9 I, | = 51[1 52[2 8,[,

From the above, we conclude that
DI‘,‘Z(S,'II' foralli:l,...,r

In other words, SVD is a special factorization of the matrix D, such that any basis
vector r; for the row space is mapped to the corresponding basis vector I; in the column
space, scaled by the singular value §;. As such, we can think of the SVD as a mapping

from an orthonormal basis (1,2, ...,1,) in R? (the row space) to an orthonormal basis
(I1,12,...,1,) in R" (the column space), with the corresponding axes scaled according
to the singular values 81, 8o, ...,§,.

7.4.2 Connection between SVD and PCA

Assume that the matrix D has been centered, and assume that it has been factorized
via SVD [Eq. (7.38)] as D = LART. Consider the scatter matrix for D, given as DTD.
We have
D™D = (LAR")" (LAR")
=RATLTLART
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=R(ATA)RT
=RAZRT (7.40)

where A is the d x d diagonal matrix defined as A3(i,i) =482, for i = 1,...,d. Only
r <min(d, n) of these eigenvalues are positive, whereas the rest are all zeros.
Because the covariance matrix of centered D is given as X = %DTD7 and because

it can be decomposed as ¥ = UAUT via PCA [Eq. (7.37)], we have

DTD=nXx
=nUAUT
=UmA)UT (7.41)

Equating Eq. (7.40) and Eq. (7.41), we conclude that the right singular vectors R are
the same as the eigenvectors of X. Further, the corresponding singular values of D are
related to the eigenvalues of ¥ by the expression

52
or, \j=-—, fori=1,...,d (7.42)
n

Let us now consider the matrix DDT. We have

DDT =(LART)(LART)™
=LARTRATL"
=L(AATLT
=LAZLT
where A,f is the n x n diagonal matrix given as Af(i,i) = 8,-2, for i =1,...,n. Only
r of these singular values are positive, whereas the rest are all zeros. Thus, the left

singular vectors in L are the eigenvectors of the matrix n x n matrix DDT, and the
corresponding eigenvalues are given as 5?.

Example 7.9. Let us consider the n x d centered Iris data matrix D from
Example 7.1, with n = 150 and d = 3. In Example 7.5 we computed the eigenvectors
and eigenvalues of the covariance matrix X as follows:

A1 =3.662 Ao =0.239 A3 =0.059
—0.390 —0.639 —0.663
u = 0.089 ug = | —0.742 uz = 0.664

—0.916 0.200 0.346
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Computing the SVD of D yields the following nonzero singular values and the
corresponding right singular vectors

81 =23.437 09 = 5.992 83 =2.974
—0.390 0.639 —0.663

ry = 0.089 Iy = 0.742 rs = 0.664
—0.916 —0.200 0.346

We do not show the left singular vectors I1,12,15 because they lie in R, Using

2
Eq. (7.42) one can verify that A; = % For example,

87 234377 549.29

A
YT 150 150

=3.662

Notice also that the right singular vectors are equivalent to the principal components
or eigenvectors of X, up to isomorphism. That is, they may potentially be reversed
in direction. For the Iris dataset, we have r{ = uy, ro = —us, and r3 = uz. Here the
second right singular vector is reversed in sign when compared to the second principal
component.

7.5 FURTHER READING

Principal component analysis was pioneered in Pearson (1901). For a comprehensive
description of PCA see Jolliffe (2002). Kernel PCA was first introduced in Scholkopf,
Smola, and Miiller (1998). For further exploration of non-linear dimensionality
reduction methods see Lee and Verleysen (2007). The requisite linear algebra
background can be found in Strang (2006).
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7.6 EXERCISES

QL.

Q2.

Q3.

Q4.

Q5.

Consider the following data matrix D:

X1 Xa
8 —20
0 -1
10 -19
10 —20
2 0

Compute the mean g and covariance matrix X for D.

—~
o
Nad

(b) Compute the eigenvalues of X.
What is the “intrinsic” dimensionality of this dataset (discounting some small

—
o
~

amount of variance)?

(d) Compute the first principal component.

(e) If the p and X from above characterize the normal distribution from which the
points were generated, sketch the orientation/extent of the 2-dimensional normal

density function.

Given the covariance matrix X = < >7 answer the following questions:

4 5
(a) Compute the eigenvalues of X by solving the equation det(X — AI) =0.
(b) Find the corresponding eigenvectors by solving the equation Xu; = Aju;.

Compute the singular values and the left and right singular vectors of the following

A:<110>
0 0 1

Consider the data in Table 7.1. Define the kernel function as follows: K(x;,x;) = [Ix; —
Xj I2. Answer the following questions:

(a) Compute the kernel matrix K.

(b) Find the first kernel principal component.

matrix:

Table 7.1. Dataset for

Q4
i X;
X1 4,2.9)
X4 (2.5,1)
X7 3.5,4)
Xg (2,2.1)

Given the two points x; = (1,2)T, and x9 = (2,1)T, use the kernel function
K(xi, %)) = (] %})?

to find the kernel principal component, by solving the equation Kc = n;c.
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In many applications one is interested in how often two or more objects of interest
co-occur. For example, consider a popular website, which logs all incoming traffic to
its site in the form of weblogs. Weblogs typically record the source and destination
pages requested by some user, as well as the time, return code whether the request was
successful or not, and so on. Given such weblogs, one might be interested in finding
if there are sets of web pages that many users tend to browse whenever they visit the
website. Such “frequent” sets of web pages give clues to user browsing behavior and
can be used for improving the browsing experience.

The quest to mine frequent patterns appears in many other domains. The proto-
typical application is market basket analysis, that is, to mine the sets of items that
are frequently bought together at a supermarket by analyzing the customer shopping
carts (the so-called “market baskets”). Once we mine the frequent sets, they allow us
to extract association rules among the item sets, where we make some statement about
how likely are two sets of items to co-occur or to conditionally occur. For example,
in the weblog scenario frequent sets allow us to extract rules like, “Users who visit
the sets of pages main, laptops and rebates also visit the pages shopping-cart
and checkout”, indicating, perhaps, that the special rebate offer is resulting in more
laptop sales. In the case of market baskets, we can find rules such as “Customers
who buy milk and cereal also tend to buy bananas,” which may prompt a grocery
store to co-locate bananas in the cereal aisle. We begin this chapter with algorithms
to mine frequent itemsets, and then show how they can be used to extract association
rules.

8.1 FREQUENT ITEMSETS AND ASSOCIATION RULES

Itemsets and Tidsets

Let Z = {x1,x2,...,x,} be a set of elements called items. A set X C 7 is called an
itemset. The set of items Z may denote, for example, the collection of all products
sold at a supermarket, the set of all web pages at a website, and so on. An itemset
of cardinality (or size) k is called a k-itemset. Further, we denote by Z® the set of
all k-itemsets, that is, subsets of Z with size k. Let T = {f1,1t2,...,t,} be another set

217
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of elements called transaction identifiers or tids. A set T C T is called a tidset. We
assume that itemsets and tidsets are kept sorted in lexicographic order.

A transaction is a tuple of the form (¢, X), where r € T is a unique transaction
identifier, and X is an itemset. The set of transactions 7 may denote the set of all
customers at a supermarket, the set of all the visitors to a website, and so on. For
convenience, we refer to a transaction (¢, X) by its identifier ¢.

Database Representation

A binary database D is a binary relation on the set of tids and items, that is, DC T xZ.
We say that tid ¢t € T contains item x € Z iff (¢,x) € D. In other words, (¢,x) € D iff
x € X in the tuple (f,X). We say that tid ¢ contains itemset X = {x1,x2,...,x;} iff
(t,x)eDforalli=1,2,...,k.

Example 8.1. Figure 8.1a shows an example binary database. Here Z =
{A,B,C,D,E}, and T ={1,2,3,4,5,6}. In the binary database, the cell in row ¢
and column x is 1 iff (#,x) € D, and 0 otherwise. We can see that transaction 1
contains item B, and it also contains the itemset BE, and so on.

For a set X, we denote by 2% the powerset of X, that is, the set of all subsets of
X. Let i:27 — 27 be a function, defined as follows:

i(T)={x| Vt €T, t contains x} (8.1)

where T C T, and i(T) is the set of items that are common to all the transactions in the
tidset T. In particular, i(¢) is the set of items contained in tid ¢ € 7. Note that in this
chapter we drop the set notation for convenience (e.g., we write i(r) instead of i({r})). It
is sometimes convenient to consider the binary database D, as a transaction database
consisting of tuples of the form (¢,i(t)), with t € 7. The transaction or itemset database
can be considered as a horizontal representation of the binary database, where we omit
items that are not contained in a given tid.
Let t: 27 — 27 be a function, defined as follows:

t(X)={r| t € T and ¢ contains X} (8.2)

where X C 7, and t(X) is the set of tids that contain all the items in the itemset
X. In particular, t(x) is the set of tids that contain the single item x € Z. It is
also sometimes convenient to think of the binary database D, as a tidset database
containing a collection of tuples of the form (x,t(x)), with x € Z. The tidset database
is a vertical representation of the binary database, where we omit tids that do not
contain a given item.

Example 8.2. Figure 8.1b shows the corresponding transaction database for the
binary database in Figure 8.1a. For instance, the first transaction is (1, {A, B, D, E}),
where we omit item C since (1,C) € D. Henceforth, for convenience, we drop
the set notation for itemsets and tidsets if there is no confusion. Thus, we write
(1,{A,B,D,E}) as (1, ABDE).

Figure 8.1c shows the corresponding vertical database for the binary database
in Figure 8.1a. For instance, the tuple corresponding to item A, shown in the first
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DI|A|B|C|D|E t i(z) x |A|B|C|D|E
1 1111011 1| ABDE 11112111
2 0Oj1]1]0(1 2 BCE 3124132
3 1111011 3| ABDE tx) (413|553
4 11111071 4| ABCE 514]16|6]|4
5 111111 5| ABCDE 5 5
6 O(1]1f1]0 6 BCD 6
(a) Binary database (b) Transaction database (c) Vertical database

Figure 8.1. An example database.

column, is (A, {1, 3,4, 5}), which we write as (A, 1345) for convenience; we omit tids
2 and 6 because (2,A) €D and (6,A) ¢D.

Support and Frequent Itemsets
The support of an itemset X in a dataset D, denoted sup(X, D), is the number of
transactions in D that contain X:

sup(X,D) = |{¢ | (£,i(t)) € D and X Ci(0)}| = [t(X)]

The relative support of X is the fraction of transactions that contain X:

sup(X, D)

rsup(X, D) = D

It is an estimate of the joint probability of the items comprising X.

An itemset X is said to be frequent in D if sup(X, D) > minsup, where minsup
is a user defined minimum support threshold. When there is no confusion about the
database D, we write support as sup(X), and relative support as rsup(X). If minsup
is specified as a fraction, then we assume that relative support is implied. We use the
set F to denote the set of all frequent itemsets, and F*® to denote the set of frequent
k-itemsets.

Example 8.3. Given the example dataset in Figure 8.1, let minsup = 3 (in relative
support terms we mean minsup = 0.5). Table 8.1 shows all the 19 frequent itemsets
in the database, grouped by their support value. For example, the itemset BCE is
contained in tids 2, 4, and 5, so t(BCE) = 245 and sup(BCE) = |[t(BCE)| = 3. Thus,
BCE is a frequent itemset. The 19 frequent itemsets shown in the table comprise
the set F. The sets of all frequent k-itemsets are

FO ={A,B,C,D,E}

F@ ={AB, AD, AE, BC, BD, BE, CE, DE}
F® = [ABD, ABE, ADE, BCE, BDE}

F% = {ABDE}
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Table 8.1. Frequent itemsets with minsup =3

sup itemsets
6 B
5 E,BE
4 A,C,D,AB, AE,BC,BD, ABE
3 AD, CE,DE, ABD, ADE, BCE, BDE, ABDE

Association Rules

An association rule is an expression X —> Y, where X and Y are itemsets and they
are disjoint, that is, X, Y € Z, and XNY =@. Let the itemset XUY be denoted as
XY. The support of the rule is the number of transactions in which both X and Y
co-occur as subsets:

s =sup(X —> Y) = [t(XY)| = sup(XY)

The relative support of the rule is defined as the fraction of transactions where X and
Y co-occur, and it provides an estimate of the joint probability of X and Y:

sup(XY)

T:P(X/\Y)

rsupX — Y) =
The confidence of a rule is the conditional probability that a transaction contains
Y given that it contains X:

PXAY)  sup(XY)

c=conf(X —Y)=PY[X)= PX)  supX)

A rule is frequent if the itemset XY is frequent, that is, sup(XY) > minsup and a rule
is strong if conf > minconf, where minconf is a user-specified minimum confidence
threshold.

Example 8.4. Consider the association rule BC — E. Using the itemset support
values shown in Table 8.1, the support and confidence of the rule are as follows:

s =sup(BC — E) =sup(BCE) =3

sup(BCE)
¢ =conf(BC — E) Sup(BO) 3/ 0.75

Itemset and Rule Mining

From the definition of rule support and confidence, we can observe that to generate
frequent and high confidence association rules, we need to first enumerate all the
frequent itemsets along with their support values. Formally, given a binary database
D and a user defined minimum support threshold minsup, the task of frequent itemset
mining is to enumerate all itemsets that are frequent, i.e., those that have support at
least minsup. Next, given the set of frequent itemsets F and a minimum confidence
value minconf, the association rule mining task is to find all frequent and strong
rules.
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8.2 ITEMSET MINING ALGORITHMS

We begin by describing a naive or brute-force algorithm that enumerates all the
possible itemsets X C Z, and for each such subset determines its support in the input
dataset D. The method comprises two main steps: (1) candidate generation and (2)
support computation.

Candidate Generation

This step generates all the subsets of Z, which are called candidates, as each itemset is
potentially a candidate frequent pattern. The candidate itemset search space is clearly
exponential because there are 27! potentially frequent itemsets. It is also instructive
to note the structure of the itemset search space; the set of all itemsets forms a lattice
structure where any two itemsets X and Y are connected by a link iff X is an immediate
subset of Y, that is, X CY and |X|=|Y|— 1. In terms of a practical search strategy,
the itemsets in the lattice can be enumerated using either a breadth-first (BFS) or
depth-first (DFS) search on the prefix tree, where two itemsets X,Y are connected
by a link iff X is an immediate subset and prefix of Y. This allows one to enumerate
itemsets starting with an empty set, and adding one more item at a time.

Support Computation
This step computes the support of each candidate pattern X and determines if it is
frequent. For each transaction (¢,i(f)) in the database, we determine if X is a subset
of i(¢). If so, we increment the support of X.

The pseudo-code for the brute-force method is shown in Algorithm 8.1. It
enumerates each itemset X € Z, and then computes its support by checking if X Ci(z)
for each t € T.

ALGORITHM 8.1. Algorithm BruteForce

BruteForce (D, Z, minsup):
F <@ // set of frequent itemsets
foreach X € 7 do
sup(X) < ComputeSupport (X, D)
if sup(X) > minsup then
L F <« FU {(X, sup(X))}

Ot W N =

6 return F

ComputeSupport (X, D):
7 sup(X) <0
g8 foreach (¢,i(¢)) € D do
9 if X Ci(¢) then
L L sup(X) < sup(X)+1

11 return sup(X)
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Figure 8.2. Itemset lattice and prefix-based search tree (in bold).

Example 8.5. Figure 8.2 shows the itemset lattice for the set of items 7 =
{A,B,C,D,E}. There are 27! = 2% = 32 possible itemsets including the empty set.
The corresponding prefix search tree is also shown (in bold). The brute-force method
explores the entire itemset search space, regardless of the minsup threshold employed.
If minsup = 3, then the brute-force method would output the set of frequent itemsets
shown in Table 8.1.

Computational Complexity

Support computation takes time O(|Z]|-|D|) in the worst case, and because there are
O(2%!) possible candidates, the computational complexity of the brute-force method
is O(JZ| - |D| - 2"%!). Because the database D can be very large, it is also important to
measure the input/output (I/O) complexity. Because we make one complete database
scan to compute the support of each candidate, the I/O complexity of BruteForce is
0(2"1) database scans. Thus, the brute force approach is computationally infeasible for
even small itemset spaces, whereas in practice Z can be very large (e.g., a supermarket
carries thousands of items). The approach is impractical from an I/O perspective
as well.
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We shall see next how to systematically improve on the brute force approach, by
improving both the candidate generation and support counting steps.

8.2.1 Level-wise Approach: Apriori Algorithm

The brute force approach enumerates all possible itemsets in its quest to determine
the frequent ones. This results in a lot of wasteful computation because many of
the candidates may not be frequent. Let X,Y € 7 be any two itemsets. Note that if
X CY, then sup(X) > sup(Y), which leads to the following two observations: (1) if
X is frequent, then any subset Y C X is also frequent, and (2) if X is not frequent,
then any superset Y D X cannot be frequent. The Apriori algorithm utilizes these two
properties to significantly improve the brute-force approach. It employs a level-wise
or breadth-first exploration of the itemset search space, and prunes all supersets of
any infrequent candidate, as no superset of an infrequent itemset can be frequent.
It also avoids generating any candidate that has an infrequent subset. In addition
to improving the candidate generation step via itemset pruning, the Apriori method
also significantly improves the I/O complexity. Instead of counting the support for a
single itemset, it explores the prefix tree in a breadth-first manner, and computes the
support of all the valid candidates of size k that comprise level k in the prefix tree.

Example 8.6. Consider the example dataset in Figure 8.1; let minsup = 3. Figure 8.3
shows the itemset search space for the Apriori method, organized as a prefix tree
where two itemsets are connected if one is a prefix and immediate subset of the
other. Each node shows an itemset along with its support, thus AC(2) indicates that
sup(AC) = 2. Apriori enumerates the candidate patterns in a level-wise manner,
as shown in the figure, which also demonstrates the power of pruning the search
space via the two Apriori properties. For example, once we determine that AC is
infrequent, we can prune any itemset that has AC as a prefix, that is, the entire
subtree under AC can be pruned. Likewise for CD. Also, the extension BCD from
BC can be pruned, since it has an infrequent subset, namely CD.

Algorithm 8.2 shows the pseudo-code for the Apriori method. Let C*® denote the
prefix tree comprising all the candidate k-itemsets. The method begins by inserting the
single items into an initially empty prefix tree to populate C. The while loop (lines
5-11) first computes the support for the current set of candidates at level k via the
ComputeSupport procedure that generates k-subsets of each transaction in the
database D, and for each such subset it increments the support of the corresponding
candidate in C® if it exists. This way, the database is scanned only once per level,
and the supports for all candidate k-itemsets are incremented during that scan. Next,
we remove any infrequent candidate (line 9). The leaves of the prefix tree that survive
comprise the set of frequent k-itemsets F®, which are used to generate the candidate
(k + 1)-itemsets for the next level (line 10). The ExtendPrefixTree procedure employs
prefix-based extension for candidate generation. Given two frequent k-itemsets X,
and X, with a common k — 1 length prefix, that is, given two sibling leaf nodes
with a common parent, we generate the (k + 1)-length candidate X,, = X, UX,. This
candidate is retained only if it has no infrequent subset. Finally, if a k-itemset X, has
no extension, it is pruned from the prefix tree, and we recursively prune any of its
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Level 2 o

Level 3| N\ N el

Figure 8.3. Apriori: prefix search tree and effect of pruning. Shaded nodes indicate infrequent
itemsets, whereas dashed nodes and lines indicate all of the pruned nodes and branches. Solid lines
indicate frequent itemsets.

ancestors with no k-itemset extension, so that in C® all leaves are at level k. If new
candidates were added, the whole process is repeated for the next level. This process
continues until no new candidates are added.

Example 8.7. Figure 8.4 illustrates the Apriori algorithm on the example dataset
from Figure 8.1 using minsup = 3. All the candidates C) are frequent (see
Figure 8.4a). During extension all the pairwise combinations will be considered, since
they all share the empty prefix @ as their parent. These comprise the new prefix tree
C®@ in Figure 8.4b; because E has no prefix-based extensions, it is removed from the
tree. After support computation AC(2) and CD(2) are eliminated (shown in gray)
since they are infrequent. The next level prefix tree is shown in Figure 8.4c. The
candidate BCD is pruned due to the presence of the infrequent subset CD. All of the
candidates at level 3 are frequent. Finally, C¥ (shown in Figure 8.4d) has only one
candidate X,, = ABDE, which is generated from X, = ABD and X, = ABE because
this is the only pair of siblings. The mining process stops after this step, since no
more extensions are possible.

The worst-case computational complexity of the Apriori algorithm is still O(|Z] -
ID|-271), as all itemsets may be frequent. In practice, due to the pruning of the search
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ALGORITHM 8.2. Algorithm Apriori

© 00 N O Ut W N =

10
11

12

13
14
15

16
17
18

19
20

21
22

23

Apriori (D, Z, minsup):
F <0
CY <« {@} // Initial prefix tree with single items
foreach i € Z do Add i as child of @ in CV with sup(i) <0
k<1 // k denotes the level
while C® £ do
ComputeSupport (C®, D)
foreach leaf X € C® do
L if sup(X) > minsup then F <« FU {(X, sup(X))}
else remove X from C®

C*+D) « ExtendPrefixTree (C®)
B k<—k+1

return F®

ComputeSupport (C*®,D):
foreach (z,i(¢)) € D do
foreach k-subset X Ci(t) do
L if XeC® then sup(X) < sup(X)+1
ExtendPrefixTree (C%®):
foreach leaf X, € C® do
foreach leaf X,, € sibling(X,), such that b > a do
X < X, UX,

| Add X, as child of X, with sup(Xa) < 0

if no extensions from X, then

return C®

// prune candidate if there are any infrequent subsets
if X; €C®, for all X; C Xgp, such that |X;|=|X,|—1 then

L remove X,, and all ancestors of X, with no extensions, from C*

space the cost is much lower. However, in terms of I/O cost Apriori requires O(|Z])
database scans, as opposed to the O(2%!) scans in the brute-force method. In practice,
it requires only / database scans, where [ is the length of the longest frequent itemset.

8.2.2 Tidset Intersection Approach: Eclat Algorithm

The support counting step can be improved significantly if we can index the database

in such a way that it allows fast frequency computations. Notice that in the level-wise

approach, to count the support, we have to generate subsets of each transaction and
check whether they exist in the prefix tree. This can be expensive because we may
end up generating many subsets that do not exist in the prefix tree.
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e o>
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Figure 8.4. Itemset mining: Apriori algorithm. The prefix search trees C® at each level are shown.
Leaves (unshaded) comprise the set of frequent k-itemsets F®.

The Eclat algorithm leverages the tidsets directly for support computation. The
basic idea is that the support of a candidate itemset can be computed by intersecting
the tidsets of suitably chosen subsets. In general, given t(X) and t(Y) for any two
frequent itemsets X and Y, we have

H(XY) = t(X) Nt(Y)

The support of candidate XY is simply the cardinality of t(XY), that is, sup(XY) =
[t(XY)|. Eclat intersects the tidsets only if the frequent itemsets share a common
prefix, and it traverses the prefix search tree in a DFS-like manner, processing a
group of itemsets that have the same prefix, also called a prefix equivalence class.

Example 8.8. For example, if we know that the tidsets for item A and C are
t(A) = 1345 and t(C) = 2456, respectively, then we can determine the support of AC
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ALGORITHM 8.3. Algorithm Eclat

// Initial Call: F « @, P < {(i,t())) |i € Z,|t(i)| > minsup}
Eclat (P, minsup, F):
foreach (X,,t(X,)) € P do
F <« FU {(Xa, sup(Xa))}
P, <0
foreach (X,,t(X,)) € P, with X, > X, do

X=X, UX,

t(Xap) = t(Xa) NE(Xp)

if sup(X,;) > minsup then

| Pa < PoU{(Xap, t(Xap)) }

9o | if P,#0 then Eclat (P,, minsup, F)

0 N O s W N =

by intersecting the two tidsets, to obtain t(AC) = t(A) Nt(C) = 1345 N 2456 = 45.
In this case, we have sup(AC) = |45] = 2. An example of a prefix equivalence
class is the set Pn = {AB,AC,AD,AE}, as all the elements of P5 share A as
the prefix.

The pseudo-code for Eclat is given in Algorithm 8.3. It employs a vertical
representation of the binary database D. Thus, the input is the set of tuples (i, t(i))
for all frequent items i € Z, which comprise an equivalence class P (they all share the
empty prefix); it is assumed that P contains only frequent itemsets. In general, given
a prefix equivalence class P, for each frequent itemset X, € P, we try to intersect
its tidset with the tidsets of all other itemsets X, € P. The candidate pattern is
Xaop = X, UX,, and we check the cardinality of the intersection t(X,) Nt(X,) to
determine whether it is frequent. If so, X,, is added to the new equivalence class
P, that contains all itemsets that share X, as a prefix. A recursive call to Eclat then
finds all extensions of the X, branch in the search tree. This process continues until
no extensions are possible over all branches.

Example 8.9. Figure 8.5 illustrates the Eclat algorithm. Here minsup = 3, and the
initial prefix equivalence class is

Py = [ (A, 1345), (B, 123456), (C, 2456), (D, 1356), (E, 12345)}

Eclat intersects t(A) with each of t(B), t(C), t(D), and t(E) to obtain the tidsets
for AB, AC, AD and AE, respectively. Out of these AC is infrequent and is pruned
(marked gray). The frequent itemsets and their tidsets comprise the new prefix
equivalence class

Py = {(AB, 1345), (AD, 135), (AE, 1345)}
which is recursively processed. On return, Eclat intersects t(B) with t(C), t(D), and
t(E) to obtain the equivalence class

Pg = {(BC, 2456), (BD, 1356), (BE, 12345) }
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A B C D E
1345 123456 2456 1356 12345
AB AD| [ AE BC BD BE CD| [CE| [DE
1345 135 | | 1345 2456 1356 | | 12345 | | 56 | [245| [135
ABD | [ABE ADE BCD | [BCE | [BDE
135 | [1345 135 56 245 135

ABDE
135

Figure 8.5. Eclat algorithm: tidlist intersections (gray boxes indicate infrequent itemsets).

Other branches are processed in a similar manner; the entire search space that Eclat
explores is shown in Figure 8.5. The gray nodes indicate infrequent itemsets, whereas
the rest constitute the set of frequent itemsets.

The computational complexity of Eclat is O(|D]|-2/Z!) in the worst case, since there
can be 27! frequent itemsets, and an intersection of two tidsets takes at most O(|D|)
time. The I/O complexity of Eclat is harder to characterize, as it depends on the size
of the intermediate tidsets. With ¢ as the average tidset size, the initial database size
is O(t - |Z|), and the total size of all the intermediate tidsets is O(¢ - 21). Thus, Eclat
requires % = 0(2"!/|Z|) database scans in the worst case.

Diffsets: Difference of Tidsets

The Eclat algorithm can be significantly improved if we can shrink the size of
the intermediate tidsets. This can be achieved by keeping track of the differences
in the tidsets as opposed to the full tidsets. Formally, let X, = {x1,x2,...,x¢_1, xx}
be a k-itemset. Define the diffset of X; as the set of tids that contain the prefix
Xi—1 ={x1,...,xx—1} but do not contain the item x;, given as

d(Xy) = t(Xe—1) \ 8(Xyp)

Consider two k-itemsets X, = {x1,...,xx_1,x,} and X, = {x1,...,X_1,Xp} that share
the common (k — 1)-itemset X = {x1,x2,...,x,_1} as a prefix. The diffset of X,, =
XoUXp ={x1,..., X1, Xa, Xp} is given as

d(Xap) = (X)) \ t(Xap) = t(Xa) \ 1(X5p) (8.3)

However, note that
8(Xa) \ 8(Xp) = 8(Xo) Nt(Xyp)
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and taking the union of the above with the emptyset t(X) Nt(X), we can obtain an
expression for d(X,;,) in terms of d(X,) and d(X,) as follows:

d(Xap) = t(Xa) \ t(Xp)
= t(Xa) Nt(Xy)
= (tX) NEX,)) U (X)) NEXD))

= ((£(X0) UtC0) N (X UE) ) N (6K UEE0) N ((055) U X))

= (tX) NtXp)) N (LX) NtX)) N T
=d(Xp) \ d(X,)

Thus, the diffset of X,; can be obtained from the diffsets of its subsets X, and X,,, which
means that we can replace all intersection operations in Eclat with diffset operations.
Using diffsets the support of a candidate itemset can be obtained by subtracting the
diffset size from the support of the prefix itemset:

sup(Xap) = sup(Xa) — [d(Xap)|

which follows directly from Eq. (8.3).

The variant of Eclat that uses the diffset optimization is called dEclat, whose
pseudo-code is shown in Algorithm 8.4. The input comprises all the frequent single
items i € Z along with their diffsets, which are computed as

d@) =t@\t@) =T \t@)

Given an equivalence class P, for each pair of distinct itemsets X, and X, we generate
the candidate pattern X,, = X, U X, and check whether it is frequent via the use of
diffsets (lines 6-7). Recursive calls are made to find further extensions. It is important

ALGORITHM 8.4. Algorithm dEclat

// Initial Call: F <« @,
P <« {(i,d(i),sup(i)) |i €Z,d@) =T \t@),sup(i) > minsup}
dEclat (P, minsup, F):
1 foreach (X,,d(X,),sup(X,)) € P do
2 f(—fU{(Xa,sup(Xa))}
3 P, <0
4 foreach (X,,d(X,),sup(X,)) € P, with X, > X, do
5 X =X, UX,
6 d(Xap) = d(Xp) \ d(X4)
7 sup(Xap) = sup(Xa) — [d(Xap)|
8 if sup(X,;) > minsup then
9 | Pu < Po U {(Xap, d(Xa), sup(Xa)) |

10 | if P, # ¥ then dEclat (P,, minsup, F)
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to note that the switch from tidsets to diffsets can be made during any recursive call to
the method. In particular, if the initial tidsets have small cardinality, then the initial
call should use tidset intersections, with a switch to diffsets starting with 2-itemsets.
Such optimizations are not described in the pseudo-code for clarity.

Example 8.10. Figure 8.6 illustrates the dEclat algorithm. Here minsup = 3, and
the initial prefix equivalence class comprises all frequent items and their diffsets,
computed as follows:

d(A) =T\ 1345=26
dB) =T\ 123456 = ¢
d(C) =T\ 2456 = 13
d(D) =7 \1356=24
d(E)=T\12345=6

where T = 123456. To process candidates with A as a prefix, dEclat computes the
diffsets for AB, AC, AD and AE. For instance, the diffsets of AB and AC are given as

d(AB) = d(B) \ d(A) =97\ {2,6} =@
d(AC) = d(C) \ d(A) = {1,3}\ {2,6} = 13

Figure 8.6. dEclat algorithm: diffsets (gray boxes indicate infrequent itemsets).



Itemset Mining Algorithms 231

and their support values are

sup(AB) =sup(A) — |d(AB)|=4—-0=4
sup(AC) =sup(A) — |d(AC)|=4—-2=2

Whereas AB is frequent, we can prune AC because it is not frequent. The frequent
itemsets and their diffsets and support values comprise the new prefix equivalence
class:

Pa={(AB,%,4), (AD,4,3), (AE,%,4)}

which is recursively processed. Other branches are processed in a similar manner.
The entire search space for dEclat is shown in Figure 8.6. The support of an itemset
is shown within brackets. For example, A has support 4 and diffset d(A) = 26.

8.2.3 Frequent Pattern Tree Approach: FPGrowth Algorithm

The FPGrowth method indexes the database for fast support computation via the use
of an augmented prefix tree called the frequent pattern tree (FP-tree). Each node in
the tree is labeled with a single item, and each child node represents a different item.
Each node also stores the support information for the itemset comprising the items on
the path from the root to that node. The FP-tree is constructed as follows. Initially
the tree contains as root the null item @. Next, for each tuple (¢, X) € D, where X =i(z),
we insert the itemset X into the FP-tree, incrementing the count of all nodes along the
path that represents X. If X shares a prefix with some previously inserted transaction,
then X will follow the same path until the common prefix. For the remaining items in
X, new nodes are created under the common prefix, with counts initialized to 1. The
FP-tree is complete when all transactions have been inserted.

The FP-tree can be considered as a prefix compressed representation of D. Because
we want the tree to be as compact as possible, we want the most frequent items to be
at the top of the tree. FPGrowth therefore reorders the items in decreasing order of
support, that is, from the initial database, it first computes the support of all single
items i € Z. Next, it discards the infrequent items, and sorts the frequent items by
decreasing support. Finally, each tuple (¢,X) € D is inserted into the FP-tree after
reordering X by decreasing item support.

Example 8.11. Consider the example database in Figure 8.1. We add each
transaction one by one into the FP-tree, and keep track of the count at each node. For
our example database the sorted item order is {B(6),E(5), A(4),C(4),D(4)}. Next,
each transaction is reordered in this same order; for example, (1, ABDE) becomes
(1, BEAD). Figure 8.7 illustrates step-by-step FP-tree construction as each sorted
transaction is added to it. The final FP-tree for the database is shown in Figure 8.7f.

Once the FP-tree has been constructed, it serves as an index in lieu of the original
database. All frequent itemsets can be mined from the tree directly via the FPGrowth
method, whose pseudo-code is shown in Algorithm 8.5. The method accepts as input
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Figure 8.7. Frequent pattern tree: bold edges indicate current transaction.

a FP-tree R constructed from the input database D, and the current itemset prefix
P, which is initially empty.

Given a FP-tree R, projected FP-trees are built for each frequent item i in R in
increasing order of support. To project R on item i, we find all the occurrences of i in
the tree, and for each occurrence, we determine the corresponding path from the root
to i (line 13). The count of item i on a given path is recorded in cnt (i) (line 14), and
the path is inserted into the new projected tree Rx, where X is the itemset obtained
by extending the prefix P with the item i. While inserting the path, the count of each
node in Rx along the given path is incremented by the path count cnt(i). We omit
the item i from the path, as it is now part of the prefix. The resulting FP-tree is a
projection of the itemset X that comprises the current prefix extended with item i
(line 9). We then call FPGrowth recursively with projected FP-tree Rx and the new
prefix itemset X as the parameters (line 16). The base case for the recursion happens
when the input FP-tree R is a single path. FP-trees that are paths are handled by
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ALGORITHM 8.5. Algorithm FPGrowth

// Initial Call: R <« FP-tree(D), P <« 0, F <0
FPGrowth (R, P, F, minsup):

1 Remove infrequent items from R

2 if IsPath(R) then // insert subsets of R into F
3 foreach Y C R do

4 X<« PUY

5 sup(X) < min,cy {cnt(x)}

6 F <« FU {(X, sup(X))}

7 else // process projected FP-trees for each frequent item i
8 foreach i € R in increasing order of sup(i) do

9 X« PU{i}

10 sup(X) <—sup(i) // sum of cnt(i) for all nodes labeled i
11 F <« FU {(X, sup(X))}

12 Rx <@ // projected FP-tree for X

13 foreach path € PathFromRoot(i) do

14 cnt (i) < count of i in path

15 L Insert path, excluding i, into FP-tree Rx with count cnz (i)
16 if Rx #0 then FPGrowth (Rx, X, F, minsup)

enumerating all itemsets that are subsets of the path, with the support of each such
itemset being given by the least frequent item in it (lines 2-6).

Example 8.12. We illustrate the FPGrowth method on the FP-tree R built in
Example 8.11, as shown in Figure 8.7f. Let minsup = 3. The initial prefix is P =@,
and the set of frequent items i in R are B(6), E(5), A(4), C(4), and D(4). FPGrowth
creates a projected FP-tree for each item, but in increasing order of support.

The projected FP-tree for item D is shown in Figure 8.8c. Given the initial
FP-tree R shown in Figure 8.7f, there are three paths from the root to a node
labeled D, namely

BCD, cnt(D)=1
BEACD, c¢nt(D)=1
BEAD, cnt(D)=2

These three paths, excluding the last item i = D, are inserted into the new FP-tree
Rp with the counts incremented by the corresponding cnt (D) values, that is, we
insert into Rp, the paths BC with count of 1, BEAC with count of 1, and finally
BEA with count of 2, as shown in Figures 8.8a—c. The projected FP-tree for D is
shown in Figure 8.8c, which is processed recursively.

When we process Rp, we have the prefix itemset P = D, and after removing
the infrequent item C (which has support 2), we find that the resulting FP-tree
is a single path B(4)-E(3)-A(3). Thus, we enumerate all subsets of this path and
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(a) Add BC,cnt =1

(b) Add BEAC,cnt =1 (c) Add BEA,cnt =2

Figure 8.8. Projected frequent pattern tree for D.

prefix them with D, to obtain the frequent itemsets DB(4), DE(3), DA(3), DBE(3),
DBA(3), DEA(3), and DBEA(3). At this point the call from D returns.

In a similar manner, we process the remaining items at the top level. The
projected trees for C, A, and E are all single-path trees, allowing us to generate
the frequent itemsets {CB(4), CE(3), CBE(3)}, {AE(4), AB(4), AEB(4)}, and {EB(5)},
respectively. This process is illustrated in Figure 8.9.

8.3 GENERATING ASSOCIATION RULES

Given a collection of frequent itemsets F, to generate association rules we iterate over
all itemsets Z € F, and calculate the confidence of various rules that can be derived
from the itemset. Formally, given a frequent itemset Z € F, we look at all proper
subsets X C Z to compute rules of the form

X 25Y, where Y =7\ X
where Z\ X =Z — X. The rule must be frequent because
s =sup(XY) = sup(Z) > minsup

Thus, we have to only check whether the rule confidence satisfies the minconf
threshold. We compute the confidence as follows:

_sup(XUY)  sup(Z)

o osupX) supX)

If ¢ > minconf, then the rule is a strong rule. On the other hand, if conf(X — Y) <,
then conf(W — Z\ W) < ¢ for all subsets W C X, as sup(W) > sup(X). We can thus
avoid checking subsets of X.

Algorithm 8.6 shows the pseudo-code for the association rule mining algorithm.
For each frequent itemset Z € F, with size at least 2, we initialize the set of antecedents
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Figure 8.9. FPGrowth algorithm: frequent pattern tree projection.

A with all the nonempty subsets of Z (line 2). For each X € A we check whether the
confidence of the rule X — Z\ X is at least minconf (line 7). If so, we output the

rule. Otherwise, we remove all subsets W C X from the set of possible antecedents
(line 10).

Example 8.13. Consider the frequent itemset ABDE(3) from Table 8.1, whose
support is shown within the brackets. Assume that minconf =0.9. To generate strong
association rules we initialize the set of antecedents to

A={ABD(3),ABE(4), ADE(3), BDE(3), AB(3), AD(4), AE(4),
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ALGORITHM 8.6. Algorithm AssociationRules

AssociationRules (F, minconf):

1 foreach Z € F, such that |Z] > 2 do

2 A—{X|XCZX+#0}

3 while A # @ do

4 X < maximal element in A

5 A<« A\X// remove X from A
6 ¢ < sup(Z)/sup(X)

7 if ¢ > minconf then

8 | print X — Y, sup(%2), ¢

9 else

10 L A<« A\ {W |WC X} // remove all subsets of X from A

BD(4), BE(5), DE(3), A(4),B(6),D(4), E(5)}

The first subset is X = ABD, and the confidence of ABD — E is 3/3 = 1.0, so we
output it. The next subset is X = ABE, but the corresponding rule ABE — D is not
strong since conf(ABE — D) =3/4 =0.75. We can thus remove from A all subsets
of ABE; the updated set of antecedents is therefore

A={ADE(),BDE(3),AD(4), BD(4),DE(3), D(4)}

Next, we select X = ADE, which yields a strong rule, and so do X =BDE and X =AD.
However, when we process X = BD, we find that conf(BD — AE) =3/4=0.75, and
thus we can prune all subsets of BD from A, to yield

A={DE(@3)}

The last rule to be tried is DE —> AB which is also strong. The final set of strong
rules that are output are as follows:

ABD — E,conf =1.0

ADE — B, conf =1.0

BDE — A,conf =1.0
AD — BE,conf =1.0
DE — AB,conf =1.0
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8.4 FURTHER READING

The association rule mining problem was introduced in Agrawal, Imieliriski, and Swami
(1993). The Apriori method was proposed in Agrawal and Srikant (1994), and a similar
approach was outlined independently in Mannila, Toivonen, and Verkamo (1994). The
tidlist intersection based Eclat method is described in Zaki et al. (1997), and the dEclat
approach that uses diffset appears in Zaki and Gouda (2003). Finally, the FPGrowth
algorithm is described in Han, Pei, and Yin (2000). For an experimental comparison
between several of the frequent itemset mining algorithms see Goethals and Zaki
(2004). There is a very close connection between itemset mining and association
rules, and formal concept analysis (Ganter, Wille, and Franzke, 1997). For example,
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with frequency constraints.
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8.5 EXERCISES

Q1. Given the database in Table 8.2.
(a) Using minsup = 3/8, show how the Apriori algorithm enumerates all frequent
patterns from this dataset.
(b) With minsup = 2/8, show how FPGrowth enumerates the frequent itemsets.
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Table 8.2. Transaction database for Q1

tid itemset
f ABCD

o ACDF

t3 ACDEG
ty ABDF

ts BCG

tg DFG

ty ABG

13 CDFG

Table 8.3. Dataset for Q2
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Consider the vertical database shown in Table 8.3. Assuming that minsup = 3,
enumerate all the frequent itemsets using the Eclat method.

Given two k-itemsets X, = {x1,...,Xk—1,x,} and Xp = {x1,...,Xk—1, Xp} that share the
common (k — 1)-itemset X = {x1,x9,...,Xk—1} as a prefix, prove that

sup(Xap) = sup(Xa) — [d(Xap)|

where X p = X, UXp, and d(Xgp) is the diffset of Xgp.

Given the database in Table 8.4. Show all rules that one can generate from the set
ABE.

Table 8.4. Dataset for Q4

tid itemset
f ACD
to BCE
t3 ABCE
ty BDE
t5 ABCE
tg ABCD

Consider the partition algorithm for itemset mining. It divides the database into k
partitions, not necessarily equal, such that D = Ui-‘lei, where D; is partition i, and for
any i # j, we have D; ND; = . Also let n; = |D;| denote the number of transactions in
partition D;. The algorithm first mines only locally frequent itemsets, that is, itemsets
whose relative support is above the minsup threshold specified as a fraction. In the
second step, it takes the union of all locally frequent itemsets, and computes their
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support in the entire database D to determine which of them are globally frequent.
Prove that if a pattern is globally frequent in the database, then it must be locally
frequent in at least one partition.

Q6. Consider Figure 8.10. It shows a simple taxonomy on some food items. Each leaf is a
simple item and an internal node represents a higher-level category or item. Each item
(single or high-level) has a unique integer label noted under it. Consider the database
composed of the simple items shown in Table 8.5 Answer the following questions:

vegetables @ @ @ 15
1 14 6

Grudr G e Gids G
5 7

11

Geard Gt @) Grholed - (2%) Cekeind)
2 3 4 8 9 10

Figure 8.10. Item taxonomy for Q6.

Table 8.5. Dataset for Q6

=8
o

itemset
2367
134811
3911
1567
1381011
357911
4681011
135811

0 N O Ot ks W N

(a) What is the size of the itemset search space if one restricts oneself to only itemsets
composed of simple items?

(b) Let X ={x1,x2,...,x¢} be a frequent itemset. Let us replace some x; € X with its
parent in the taxonomy (provided it exists) to obtain X', then the support of the
new itemset X' is:

i. more than support of X
ii. less than support of X
iii. not equal to support of X
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iv. more than or equal to support of X
v. less than or equal to support of X
(c) Use minsup = 7/8. Find all frequent itemsets composed only of high-level items in
the taxonomy. Keep in mind that if a simple item appears in a transaction, then
its high-level ancestors are all assumed to occur in the transaction as well.

Let D be a database with n transactions. Consider a sampling approach for mining
frequent itemsets, where we extract a random sample S C D, with say m transactions,
and we mine all the frequent itemsets in the sample, denoted as Fg. Next, we make
one complete scan of D, and for each X € Fg, we find its actual support in the whole
database. Some of the itemsets in the sample may not be truly frequent in the database;
these are the false positives. Also, some of the true frequent itemsets in the original
database may never be present in the sample at all; these are the false negatives.
Prove that if X is a false negative, then this case can be detected by counting
the support in D for every itemset belonging to the negative border of Fg, denoted
Bd ™ (Fg), which is defined as the set of minimal infrequent itemsets in sample S.

Formally,
Bd™ (Fg) = inf{Y | sup(Y) < minsup and YZ C Y, sup(Z) > minsup}

where inf returns the minimal elements of the set.

Assume that we want to mine frequent patterns from relational tables. For example
consider Table 8.6, with three attributes A, B, and C, and six records. Each attribute
has a domain from which it draws its values, for example, the domain of A is dom(A) =
{ai,as,as}. Note that no record can have more than one value of a given attribute.

Table 8.6. Data for Q8

tid A B C
1 a; by c1
2 as bs Co
3 as b3 c3
4 as by c1
5 as bs c3
6 as bs c3
We define a relational pattern P over some k attributes X, Xo,...,X; to be a

subset of the Cartesian product of the domains of the attributes, i.e., P C dom(Xy) X
dom(Xz) X -+ x dom(Xy). That is, P = P; X Py X --- X Py, where each P; C dom(X;).
For example, {a;,as} x {c1} is a possible pattern over attributes A and C, whereas
{a1} x {b1} x {c1} is another pattern over attributes A, B and C.

The support of relational pattern P = Py X Py X --- X Py in dataset D is defined as
the number of records in the dataset that belong to it; it is given as

sup(P) = |{r =(r1,r2,...,ty) €D :rj € P; for all P; in P}|

For example, sup({ay,as} x {c1}) =2, as both records 1 and 4 contribute to its support.
Note, however that the pattern {a;} x {c1} has a support of 1, since only record 1 belongs
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Q9.

to it. Thus, relational patterns do not satisfy the Apriori property that we used for
frequent itemsets, that is, subsets of a frequent relational pattern can be infrequent.

We call a relational pattern P = Py X P2 X --- X Py over attributes X1, ..., X} as valid
iff for all u € P; and all v € P}, the pair of values (X; = u, X; = v) occurs together in
some record. For example, {a1,as} X {c1} is a valid pattern since both (A =a;,C=c¢1)
and (A =ag,C = c1) occur in some records (namely, records 1 and 4, respectively),
whereas {ay,a2} X {c2} is not a valid pattern, since there is no record that has the
values (A = aj, C =c2). Thus, for a pattern to be valid every pair of values in P from
distinct attributes must belong to some record.

Given that minsup = 2, find all frequent, valid, relational patterns in the dataset in
Table 8.6.

Given the following multiset dataset:

tid | multiset
ABCA

2 ABABA

CABBA

Using minsup = 2, answer the following:

(a) Find all frequent multisets. Recall that a multiset is still a set (i.e., order is not
important), but it allows multiple occurrences of an item.

(b) Find all minimal infrequent multisets, that is, those multisets that have no
infrequent sub-multisets.
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The search space for frequent itemsets is usually very large and it grows exponentially
with the number of items. In particular, a low minimum support value may result
in an intractable number of frequent itemsets. An alternative approach, studied in
this chapter, is to determine condensed representations of the frequent itemsets that
summarize their essential characteristics. The use of condensed representations can not
only reduce the computational and storage demands, but it can also make it easier to
analyze the mined patterns. In this chapter we discuss three of these representations:
closed, maximal, and nonderivable itemsets.

9.1 MAXIMAL AND CLOSED FREQUENT ITEMSETS

Given a binary database D C T x Z, over the tids 7 and items Z, let F denote the set
of all frequent itemsets, that is,

F= {X | X €7 and sup(X) > minsup}

Maximal Frequent Itemsets
A frequent itemset X € F is called maximal if it has no frequent supersets. Let M be
the set of all maximal frequent itemsets, given as

M={X|XeFand AY DX, such that Y € F}

The set M is a condensed representation of the set of all frequent itemset F, because
we can determine whether any itemset X is frequent or not using M. If there exists a
maximal itemset Z such that X C Z, then X must be frequent; otherwise X cannot be
frequent. On the other hand, we cannot determine sup(X) using M alone, although
we can lower-bound it, that is, sup(X) >sup(Z) if X C Z € M.

Example 9.1. Consider the dataset given in Figure 9.1a. Using any of the algorithms
discussed in Chapter 8 and minsup = 3, we obtain the frequent itemsets shown
in Figure 9.1b. Notice that there are 19 frequent itemsets out of the 25 —1 = 31
possible nonempty itemsets. Out of these, there are only two maximal itemsets,

242
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Tid | Itemset
1 ABDE
2 BCE
3 ABDE
4 ABCE
5 ABCDE
6 BCD
(a) Transaction database
sup Itemsets
6 B
5 E,BE
4 A,C,D,AB, AE,BC,BD, ABE
3 | AD,CE,DE, ABD, ADE, BCE, BDE, ABDE

(b) Frequent itemsets (minsup = 3)

Figure 9.1. An example database.

ABDE and BCE. Any other frequent itemset must be a subset of one of the maximal
itemsets. For example, we can determine that ABE is frequent, since ABE c ABDE,
and we can establish that sup(ABE) > sup(ABDE) = 3.

Closed Frequent Itemsets

Recall that the function t: 2% — 27 [Eq.(8.2)] maps itemsets to tidsets, and the
function i: 27 — 27 [Eq. (8.1)] maps tidsets to itemsets. That is, given T C T, and
X C 7, we have

t(X) ={r € T | t contains X}

(T)={xeZ| VteT, t contains x}
Define by c: 27 — 27 the closure operator, given as
c(X) =iot(X) =i(t(X))

The closure operator ¢ maps itemsets to itemsets, and it satisfies the following three
properties:

e Extensive: X C ¢(X)
e Monotonic: If X; € X, then c(X;) € c¢(X;)
e Idempotent: c(c(X)) = c(X)

An itemset X is called closed if ¢(X) = X, that is, if X is a fixed point of the
closure operator c. On the other hand, if X # c¢(X), then X is not closed, but the set
c¢(X) is called its closure. From the properties of the closure operator, both X and
c¢(X) have the same tidset. It follows that a frequent set X € F is closed if it has
no frequent superset with the same frequency because by definition, it is the largest



244 Summarizing Itemsets

itemset common to all the tids in the tidset t(X). The set of all closed frequent itemsets
is thus defined as

C={X|XeF and AY DX such that sup(X) =sup(Y)} (9.1)

Put differently, X is closed if all supersets of X have strictly less support, that is,
sup(X) > sup(Y), for all Y D X.

The set of all closed frequent itemsets C is a condensed representation, as we can
determine whether an itemset X is frequent, as well as the exact support of X using
C alone. The itemset X is frequent if there exists a closed frequent itemset Z € C such
that X C Z. Further, the support of X is given as

sup(X) = max{sup(Z)|Z eC,XC Z}

The following relationship holds between the set of all, closed, and maximal
frequent itemsets:

McCCF

Minimal Generators
A frequent itemset X is a minimal generator if it has no subsets with the same support:

g= {X | X e Fand AY C X, such that sup(X) = sup(Y)}

In other words, all subsets of X have strictly higher support, that is, sup(X) < sup(Y),
for all Y € X. The concept of minimum generator is closely related to the notion
of closed itemsets. Given an equivalence class of itemsets that have the same tidset,
a closed itemset is the unique maximum element of the class, whereas the minimal
generators are the minimal elements of the class.

Example 9.2. Consider the example dataset in Figure 9.1a. The frequent closed (as
well as maximal) itemsets using minsup = 3 are shown in Figure 9.2. We can see,
for instance, that the itemsets AD, DE, ABD, ADE, BDE, and ABDE, occur in the
same three transactions, namely 135, and thus constitute an equivalence class. The
largest itemset among these, namely ABDE; is the closed itemset. Using the closure
operator yields the same result; we have c(AD) =i(t(AD)) =i(135) = ABDE, which
indicates that the closure of AD is ABDE. To verify that ABDE is closed note that
¢(ABDE) = i(t(ABDE)) =i(135) = ABDE. The minimal elements of the equivalence
class, namely AD and DE, are the minimal generators. No subset of these itemsets
shares the same tidset.

The set of all closed frequent itemsets, and the corresponding set of minimal
generators, is as follows:

Tidset C g
1345 ABE A

123456 B B
1356 BD D

12345 BE E
2456 BC C
135 ABDE AD,DE
245 BCE CE
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B D E C
1345 123456 1356 12345 2456
AD DE AB AE BD BE BC
135 135 1345 1345 1356 12345 2456 245
NS
ABD ADE BDE ABE BCE
135 135 135 1345 245/
ABDE

135

Figure 9.2. Frequent, closed, minimal generators, and maximal frequent itemsets. Itemsets that are
boxed and shaded are closed, whereas those within boxes (but unshaded) are the minimal generators;

maximal itemsets are shown boxed with double lines.
Out of the closed itemsets, the maximal ones are ABDE and BCE. Consider itemset

AB. Using C we can determine that

sup(AB) = max{sup(ABE), sup(ABDE)} = max{4,3} =4

9.2 MINING MAXIMAL FREQUENT ITEMSETS: GENMAX ALGORITHM

Mining maximal itemsets requires additional steps beyond simply determining the
frequent itemsets. Assuming that the set of maximal frequent itemsets is initially
empty, that is, M =@, each time we generate a new frequent itemset X, we have to
perform the following maximality checks

e Subset Check: AY € M, such that X C Y. If such a Y exists, then clearly X is not
maximal. Otherwise, we add X to M, as a potentially maximal itemset.
e Superset Check: 4Y € M, such that Y C X. If such a Y exists, then Y cannot be maximal,

and we have to remove it from M.

These two maximality checks take O(|M]) time, which can get expensive, especially
as M grows; thus for efficiency reasons it is crucial to minimize the number of times
these checks are performed. As such, any of the frequent itemset mining algorithms
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from Chapter 8 can be extended to mine maximal frequent itemsets by adding the
maximality checking steps. Here we consider the GenMax method, which is based
on the tidset intersection approach of Eclat (see Section 8.2.2). We shall see that it
never inserts a nonmaximal itemset into M. It thus eliminates the superset checks
and requires only subset checks to determine maximality.

Algorithm 9.1 shows the pseudo-code for GenMax. The initial call takes as input
the set of frequent items along with their tidsets, (i, t(i)), and the initially empty set
of maximal itemsets, M. Given a set of itemset—tidset pairs, called IT-pairs, of the
form (X, t(X)), the recursive GenMax method works as follows. In lines 1-3, we check
if the entire current branch can be pruned by checking if the union of all the itemsets,
Y =X, is already subsumed by (or contained in) some maximal pattern Z € M. If
80, no maximal itemset can be generated from the current branch, and it is pruned.
On the other hand, if the branch is not pruned, we intersect each IT-pair (X;, t(X;))
with all the other IT-pairs (X;,t(X;)), with j > i, to generate new candidates Xj;,
which are added to the IT-pair set P; (lines 6-9). If P; is not empty, a recursive
call to GenMax is made to find other potentially frequent extensions of X;. On the
other hand, if P; is empty, it means that X; cannot be extended, and it is potentially
maximal. In this case, we add X; to the set M, provided that X; is not contained in
any previously added maximal set Z € M (line 12). Note also that, because of this
check for maximality before inserting any itemset into M, we never have to remove
any itemsets from it. In other words, all itemsets in M are guaranteed to be maximal.
On termination of GenMax, the set M contains the final set of all maximal frequent
itemsets. The GenMax approach also includes a number of other optimizations to
reduce the maximality checks and to improve the support computations. Further,
GenMax utilizes diffsets (differences of tidsets) for fast support computation, which
were described in Section 8.2.2. We omit these optimizations here for clarity.

ALGORITHM 9.1. Algorithm GenMax

// Initial Call: M <« @, P <« {(i,t(i)) |i e Z,sup(i) > minsup}
GenMax (P, minsup, M):

1Y <« UX,

2 if 3Z € M, such that Y € Z then

3 L return // prune entire branch

4 foreach (X;,t(X;)) € P do

5 P <0

6 foreach (X;,t(X;)) € P, with j > i do

7 X,'j <~ X,‘ U Xj

8 t(Xij) = t(X,) N t(XJ)

9 if sup(X;;) > minsup then P; < P; U{(X;;,t(X;;))}

10 if P; @ then GenMax (P;, minsup, M)
11 else if AZ € M, X; CZ then
12 L M=MUX;, // add X; to maximal set
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Example 9.3. Figure 9.3 shows the execution of GenMax on the example database
from Figure 9.1a using minsup = 3. Initially the set of maximal itemsets is empty.
The root of the tree represents the initial call with all IT-pairs consisting of frequent
single items and their tidsets. We first intersect t(A) with the tidsets of the other
items. The set of frequent extensions from A are

P = {(AB,1345), (AD, 135), (AE, 1345) }
Choosing X; = AB, leads to the next set of extensions, namely
Pap = {(ABD, 135), (ABE, 1345)}

Finally, we reach the left-most leaf corresponding to Papp = {(ABDE, 135)}. At this
point, we add ABDE to the set of maximal frequent itemsets because it has no other
extensions, so that M = {ABDE}.

The search then backtracks one level, and we try to process ABE, which is also
a candidate to be maximal. However, it is contained in ABDE, so it is pruned.
Likewise, when we try to process Pap = {{ADE, 135)} it will get pruned because it is
also subsumed by ABDE, and similarly for AE. At this stage, all maximal itemsets
starting with A have been found, and we next proceed with the B branch. The
left-most B branch, namely BCE, cannot be extended further. Because BCE is not
a subset of any maximal itemset in M, we insert it as a maximal itemset, so that

A B C D E
1345 | 123456 | 2456 | 1356 | 12345

P Py Pc Py
AB |AD | AE BC | BD | BE QE\ DE
1345 | 135 | 1345 2456 | 1356 | 12345 | | 245 135
Ppp  Pap Psc  Pgp
ABD [ABE| [ADE| |(BCE BDE
135 | 1345 135 215 135
PasDp
)
135

Figure 9.3. Mining maximal frequent itemsets. Maximal itemsets are shown as shaded ovals, whereas
pruned branches are shown with the strike-through. Infrequent itemsets are not shown.
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M = {ABDE, BCE}. Subsequently, all remaining branches are subsumed by one of
these two maximal itemsets, and are thus pruned.

9.3 MINING CLOSED FREQUENT ITEMSETS: CHARM ALGORITHM

Mining closed frequent itemsets requires that we perform closure checks, that is,
whether X = c¢(X). Direct closure checking can be very expensive, as we would have
to verify that X is the largest itemset common to all the tids in t(X), that is, X =
N, cvx) 1(#). Instead, we will describe a vertical tidset intersection based method called
Charm

that performs more efficient closure checking. Given a collection of IT-pairs
{{X;, t(X;))}, the following three properties hold:

Property (1) If t(X;) = t(X;), then ¢(X;) = ¢(X;) = c¢(X; UX;), which implies that we
can replace every occurrence of X; with X; UX; and prune the branch
under X; because its closure is identical to the closure of X; UX;.

Property (2) If t(X;) C t(X;), then c(X;) # c(X;) but c¢(X;) = c¢(X; UX;), which means
that we can replace every occurrence of X; with X; UX;, but we cannot
prune X; because it generates a different closure. Note that if t(X;) D
t(X;) then we simply interchange the role of X; and X;.

Property (3) If t(X;) # t(X;), then c(X;) # c(X;) # c(X; UX;). In this case we cannot
remove either X; or X;, as each of them generates a different closure.

Algorithm 9.2 presents the pseudo-code for Charm, which is also based on the
Eclat algorithm described in Section 8.2.2. It takes as input the set of all frequent single
items along with their tidsets. Also, initially the set of all closed itemsets, C, is empty.
Given any IT-pair set P = {(X;,t(X;))}, the method first sorts them in increasing
order of support. For each itemset X; we try to extend it with all other items X; in
the sorted order, and we apply the above three properties to prune branches where
possible. First we make sure that X;; = X; UX; is frequent, by checking the cardinality
of t(X;;). If yes, then we check properties 1 and 2 (lines 8 and 12). Note that whenever
we replace X; with X;; =X; UX;, we make sure to do so in the current set P, as well
as the new set P;. Only when property 3 holds do we add the new extension X;; to the
set P; (line 14). If the set P; is not empty, then we make a recursive call to Charm.
Finally, if X; is not a subset of any closed set Z with the same support, we can safely
add it to the set of closed itemsets, C (line 18). For fast support computation, Charm
uses the diffset optimization described in Section 8.2.2; we omit it here for clarity.

Example 9.4. We illustrate the Charm algorithm for mining frequent closed itemsets
from the example database in Figure 9.1a, using minsup = 3. Figure 9.4 shows the
sequence of steps. The initial set of IT-pairs, after support based sorting, is shown
at the root of the search tree. The sorted order is A, C, D, E, and B. We first
process extensions from A, as shown in Figure 9.4a. Because AC is not frequent,
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ALGORITHM 9.2. Algorithm Charm

// Initial Call: C <@, P <« {(i,t(i)) cieZ,sup(i) > minsup}
Charm (P, minsup, C):

1 Sort P in increasing order of support (i.e., by increasing [t(X;))
2 foreach (X;,t(X;)) € P do

3 P <0

4 foreach (X;,t(X;)) € P, with j >i do

5 X,‘j = X,‘ U Xj

6 t(Xj) =t(X;) N (X))

7 if sup(X;;) > minsup then

8 if t(X;) =t(X;) then // Property 1

9 Replace X; with X;; in P and P;

10 Remove (X;,t(X;)) from P

11 else

12 if t(X;) C t(X;) then // Property 2
13 | Replace X; with X;; in P and P;

14 else // Property 3

15 L P; (_PiU{(Xijat(Xij))}

16 if P;#@ then Charm (P;, minsup, C)

17 if AZ €C, such that X; € Z and t(X;) =t(Z) then
18 L C=CUX; // Add X; to closed set

it is pruned. AD is frequent and because t(A) # t(D), we add (AD, 135) to the set
Pa (property 3). When we combine A with E, property 2 applies, and we simply
replace all occurrences of A in both P and P with AE, which is illustrated with the
strike-through. Likewise, because t(A) C t(B) all current occurrences of A, actually
AE, in both P and Pp are replaced by AEB. The set P thus contains only one
itemset {{ADEB,135)}. When Charm is invoked with P as the IT-pair, it jumps
straight to line 18, and adds ADEB to the set of closed itemsets C. When the call
returns, we check whether AEB can be added as a closed itemset. AEB is a subset
of ADEB, but it does not have the same support, thus AEB is also added to C. At
this point all closed itemsets containing A have been found.

The Charm algorithm proceeds with the remaining branches as shown in
Figure 9.4b. For instance, C is processed next. CD is infrequent and thus pruned.
CE is frequent and it is added to Pc as a new extension (via property 3). Because
t(C) C t(B), all occurrences of C are replaced by CB, and Pc = {{(CEB, 245)}. CEB
and CB are both found to be closed. The computation proceeds in this manner until
all closed frequent itemsets are enumerated. Note that when we get to DEB and
perform the closure check, we find that it is a subset of ADEB and also has the
same support; thus DEB is not closed.
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A AE CAEB ¢ |[ D E B
1345 2456 || 1356 || 12345 || 123456
Py
AD ADE (CADEBD
135

(a) Process A

NEEHOIEOIEIOIE

1345 2456 1356 12345 | 123456
PA PC PD
AD ADE CADEBD | | <& (CEB DE DEB
135 245 135
(b) Charm

Figure 9.4. Mining closed frequent itemsets. Closed itemsets are shown as shaded ovals.
Strike-through represents itemsets X; replaced by X; UX; during execution of the algorithm. Infrequent
itemsets are not shown.

9.4 NONDERIVABLE ITEMSETS

An itemset is called nonderivable if its support cannot be deduced from the supports
of its subsets. The set of all frequent nonderivable itemsets is a summary or condensed
representation of the set of all frequent itemsets. Further, it is lossless with respect
to support, that is, the exact support of all other frequent itemsets can be deduced
from it.

Generalized Itemsets

Let 7 be a set of tids, let Z be a set of items, and let X be a k-itemset, that is,
X = {x1,x9,...,x¢}. Consider the tidsets t(x;) for each item x; € X. These k-tidsets
induce a partitioning of the set of all tids into 2* regions, some of which may be
empty, where each partition contains the tids for some subset of items Y C X, but for
none of the remaining items Z =Y \ X. Each such region is therefore the tidset of a
generalized itemset comprising items in X or their negations. As such a generalized
itemset can be represented as YZ, where Y consists of regular items and Z consists of
negated items. We define the support of a generalized itemset YZ as the number of
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t(A)
t(ACD) = ¢

t(ACD)

t(D)

Figure 9.5. Tidset partitioning induced by t(A), t(C), and t(D).

transactions that contain all items in Y but no item in Z:

sup(YZ)=|{t e T | Y Ci(r) and ZNi(r) = ¥}

Example 9.5. Consider the example dataset in Figure 9.1a. Let X = ACD. We have
t(A) = 1345, t(C) = 2456, and t(D) = 1356. These three tidsets induce a partitioning
on the space of all tids, as illustrated in the Venn diagram shown in Figure 9.5. For
example, the region labeled t(ACD) = 4 represents those tids that contain A and C
but not D. Thus, the support of the generalized itemset ACD is 1. The tids that
belong to all the eight regions are shown. Some regions are empty, which means that
the support of the corresponding generalized itemset is 0.

Inclusion—Exclusion Principle

Let YZ be a generalized itemset, and let X =Y UZ = YZ. The inclusion-exclusion
principle allows one to directly compute the support of YZ as a combination of the
supports for all itemsets W, such that Y C W C X:

sup(YZ)= Y —1"™\Yl sup(W) (9.2)
YSWcX
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Example 9.6. Let us compute the support of the generalized itemset ACD = CAD,
where Y =C, Z=AD and X=YZ = ACD. In the Venn diagram shown in Figure 9.5,
we start with all the tids in t(C), and remove the tids contained in t(AC) and t(CD).
However, we realize that in terms of support this removes sup(ACD) twice, so we
need to add it back. In other words, the support of CAD is given as
sup(CAD) = sup(C) — sup(AC) — sup(CD) + sup(ACD)
=4-2-241=1

But, this is precisely what the inclusion—exclusion formula gives:

sup(CAD) = (—1)? sup(C)+ W=C,W\Y|=0
(=)' sup(AC)+ W=AC,|[W\Y|=1
(=)' sup(CD)+ W=CD,|W\Y|=1
(—1)2 sup(ACD) W =ACD,|W\Y|=2

= sup(C) — sup(AC) — sup(CD) + sup(ACD)

We can see that the support of CAD is a combination of the support values over all
itemsets W such that C € W € ACD.

Support Bounds for an Itemset

Notice that the inclusion-exclusion formula in Eq. (9.2) for the support of YZ has
terms for all subsets between Y and X = YZ. Put differently, for a given k-itemset
X, there are 2¢ generalized itemsets of the form YZ, with Y € X and Z =X\,
and each such generalized itemset has a term for sup(X) in the inclusion—exclusion
equation; this happens when W = X. Because the support of any (generalized) itemset
must be non-negative, we can derive a bound on the support of X from each of
the 2% generalized itemsets by setting sup(YZ) > 0. However, note that whenever
X\ Y] is even, the coefficient of sup(X) is +1, but when |X\ Y| is odd, the
coefficient of sup(X) is —1 in Eq.(9.2). Thus, from the 2% possible subsets Y C X,
we derive 27! lower bounds and 2! upper bounds for sup(X), obtained after
setting sup(YZ) > 0, and rearranging the terms in the inclusion-exclusion formula,
so that sup(X) is on the left hand side and the the remaining terms are on the right
hand side

Upper Bounds (|X\ Y] is odd):  sup(X) < Z — 1Y HDgup (W) (9.3)
YcWcX

Lower Bounds (|X\ Y] is even): sup(X) > Z — 1Y HDgyup(W) (9.4)
YSWceX

Note that the only difference in the two equations is the inequality, which depends on

the starting subset Y.

Example 9.7. Consider Figure 9.5, which shows the partitioning induced by the
tidsets of A, C, and D. We wish to determine the support bounds for X = ACD
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using each of the generalized itemsets YZ where Y € X. For example, if Y = C, then
the inclusion-exclusion principle [Eq. (9.2)] gives us

sup(CAD) = sup(C) — sup(AC) — sup(CD) + sup(ACD)
Setting sup(CAD) > 0, and rearranging the terms, we obtain
sup(ACD) > —sup(C) + sup(AC) + sup(CD)

which is precisely the expression from the lower-bound formula in Eq. (9.4) because
IX\Y|=|ACD — C| = |AD| = 2 is even.
As another example, let Y = @. Setting sup(ACD) > 0, we have
sup(ACD) = sup(@) — sup(A) — sup(C) — sup(D) +
sup(AC) 4+ sup(AD) + sup(CD) — sup(ACD) >0
= sup(ACD) < sup(@) — sup(A) — sup(C) — sup(D) +
sup(AC) 4+ sup(AD) + sup(CD)

Notice that this rule gives an upper bound on the support of ACD, which also
follows from Eq. (9.3) because | X\ Y| =3 is odd.
In fact, from each of the regions in Figure 9.5, we get one bound, and out of the
eight possible regions, exactly four give upper bounds and the other four give lower
bounds for the support of ACD:

sup(ACD) >0 when Y = ACD
<sup(AC) when Y = AC
<sup(AD) when Y = AD
<sup(CD) when Y =CD
> sup(AC) + sup(AD) —sup(A) when Y =A
> sup(AC) +sup(CD) — sup(C) when Y =C
> sup(AD) + sup(CD) — sup(D) when Y =D

< sup(AC) +sup(AD) + sup(CD)—
sup(A) —sup(C) —sup(D) +sup(@) when Y =0

This derivation of the bounds is schematically summarized in Figure 9.6. For
instance, at level 2 the inequality is >, which implies that if Y is any itemset at
this level, we will obtain a lower bound. The signs at different levels indicate the
coefficient of the corresponding itemset in the upper or lower bound computations
via Eq.(9.3) and Eq.(9.4). Finally, the subset lattice shows which intermediate
terms W have to be considered in the summation. For instance, if Y = A, then the
intermediate terms are W € {AC, AD, A}, with the corresponding signs {+1,+1, —1},
so that we obtain the lower bound rule:

sup(ACD) > sup(AC) 4+ sup(AD) — sup(A)
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subset lattice

@ sign inequality level

Figure 9.6. Support bounds from subsets.
Nonderivable Itemsets
Given an itemset X, and Y C X, let IE(Y) denote the summation

EY)= Y 1Y supw)
YSWcX

Then, the sets of all upper and lower bounds for sup(X) are given as
UBX) = {IE(Y)| Y CX, |X\Y]is odd}
LB(X) = {IE(Y)| Y CX, X\ Y] is even}

An itemset X is called nonderivable if max{LB(X)} # min{UB(X)}, which implies that
the support of X cannot be derived from the support values of its subsets; we know
only the range of possible values, that is,

sup(X) € [max{LB(X)}, min{UB(X)}]
On the other hand, X is derivable if sup(X) = max{LB(X)} = min{UB(X)} because in
this case sup(X) can be derived exactly using the supports of its subsets. Thus, the
set of all frequent nonderivable itemsets is given as

N = [X € F| max{LB(X)} # min{UB(X)}}

where F is the set of all frequent itemsets.

Example 9.8. Consider the set of upper bound and lower bound formulas for
sup(ACD) outlined in Example 9.7. Using the tidset information in Figure 9.5, the
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support lower bounds are

sup(ACD) >0
> sup(AC) +sup(AD) —sup(A) =2+3—-4=1
> sup(AC) +sup(CD) —sup(C) =2+2—-4=0
> sup(AD) +sup(CD) —sup(D) =3+2—-4=0
and the upper bounds are
sup(ACD) < sup(AC) =2
<sup(AD)=3
<sup(CD) =2
< sup(AC) +sup(AD) + sup(CD) — sup(A) — sup(C)—
sup(D) +sup@) =2+3+2-4—-4—-4+6=1
Thus, we have

LB(ACD) ={0,1} max{LB(ACD)} =1
UB(ACD) ={1, 2,3} min{UB(ACD)} =1
Because max{LB(ACD)} = min{UB(ACD)} we conclude that ACD is derivable.
Note that is it not essential to derive all the upper and lower bounds before

one can conclude whether an itemset is derivable. For example, let X = ABDE.
Considering its immediate subsets, we can obtain the following upper bound values:

sup(ABDE) < sup(ABD) =3
<sup(ABE) =4
<sup(ADE) =3
<sup(BDE) =3

From these upper bounds, we know for sure that sup(ABDE) < 3. Now, let us consider
the lower bound derived from Y = AB:

sup(ABDE) > sup(ABD) 4+ sup(ABE) —sup(AB) =3+4—-4=3

At this point we know that sup(ABDE) > 3, so without processing any further
bounds, we can conclude that sup(ABDE) € [3,3], which means that ABDE is
derivable.

For the example database in Figure 9.1a, the set of all frequent nonderivable
itemsets, along with their support bounds, is

N ={A|0, 6], B|0, 6], C[0, 6], D[0, 6], E[0, 6],
AD|2,4], AE[3,4], CE[3,4], DE[3,4]}

Notice that single items are always nonderivable by definition.
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9.5 FURTHER READING

The concept of closed itemsets is based on the elegant lattice theoretic framework of
formal concept analysis (Ganter, Wille, and Franzke, 1997). The Charm algorithm for
mining frequent closed itemsets appears in Zaki and Hsiao (2005), and the GenMax
method for mining maximal frequent itemsets is described in Gouda and Zaki (2005).
For an Apriori style algorithm for maximal patterns, called MaxMiner, that uses very
effective support lower bound based itemset pruning see Bayardo (1998). The notion
of minimal generators was proposed in Bastide et al. (2000); they refer to them as key
patterns. Nonderivable itemset mining task was introduced in Calders and Goethals
(2007).
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9.6 EXERCISES

Q1. True or False:
(a) Maximal frequent itemsets are sufficient to determine all frequent itemsets with
their supports.
(b) An itemset and its closure share the same set of transactions.
(c) The set of all maximal frequent sets is a subset of the set of all closed frequent
itemsets.
(d) The set of all maximal frequent sets is the set of longest possible frequent itemsets.

Q2. Given the database in Table 9.1
(a) Show the application of the closure operator on AE, that is, compute c(AE). Is
AE closed?
(b) Find all frequent, closed, and maximal itemsets using minsup = 2/6.

Q3. Given the database in Table 9.2, find all minimal generators using minsup = 1.
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Q4.

Q5.

Q6.

Table 9.1. Dataset for

Q2
Tid Itemset
f ACD
to BCE
t3 ABCE
ty BDE
t5 ABCE
tg ABCD

Table 9.2. Dataset for
Q3

Tid Itemset
ACD
BCD

AC
ABD

ABCD

BCD

S U W N =

Figure 9.7. Closed itemset lattice for Q4.

Consider the frequent closed itemset lattice shown in Figure 9.7. Assume that the item

space is Z={A, B, C, D, E}. Answer the following questions:

(a) What is the frequency of CD?

(b) Find all frequent itemsets and their frequency, for itemsets in the subset interval
[B, ABD].

(c) Is ADE frequent? If yes, show its support. If not, why?

Let C be the set of all closed frequent itemsets and M the set of all maximal frequent
itemsets for some database. Prove that M CC.

Prove that the closure operator ¢ =iot satisfies the following properties (X and Y are
some itemsets):

(a) Extensive: X C ¢(X)

(b) Monotonic: If X €Y then c¢(X) C c(Y)

(¢c) Idempotent: c(X) = c(c(X))
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Table 9.3. Dataset for
Q7

Tid Itemset
ACD
BCD
ACD
ABD

ABCD

BC

S TR W N

Q7. Let 6 be an integer. An itemset X is called a §-free itemset iff for all subsets Y C X, we
have sup(Y) —sup(X) > §. For any itemset X, we define the §-closure of X as follows:

3-closure(X) = {Y | XCY,sup(X) —sup(Y) <4, and Y is maximal}

Consider the database shown in Table 9.3. Answer the following questions:
(a) Given § =1, compute all the §-free itemsets.
(b) For each of the §-free itemsets, compute its §-closure for § = 1.

Q8. Given the lattice of frequent itemsets (along with their supports) shown in Figure 9.8,
answer the following questions:
(a) List all the closed itemsets.
(b) Is BCD derivable? What about ABCD? What are the bounds on their supports.

Figure 9.8. Frequent itemset lattice for Q8.

Q9. Prove that if an itemset X is derivable, then so is any superset Y D X. Using this
observation describe an algorithm to mine all nonderivable itemsets.



SEER N Sequence Mining

Many real-world applications such as bioinformatics, Web mining, and text mining
have to deal with sequential and temporal data. Sequence mining helps discover
patterns across time or positions in a given dataset. In this chapter we consider
methods to mine frequent sequences, which allow gaps between elements, as well as
methods to mine frequent substrings, which do not allow gaps between consecutive
elements.

10.1 FREQUENT SEQUENCES

Let ¥ denote an alphabet, defined as a finite set of characters or symbols, and let ||
denote its cardinality. A sequence or a string is defined as an ordered list of symbols,
and is written as s = s152...85, where 5; € ¥ is a symbol at position i, also denoted
as s[i]. Here |s| = k denotes the length of the sequence. A sequence with length k is
also called a k-sequence. We use the notation s[i : j] = s;s;41---5j-15; to denote the
substring or sequence of consecutive symbols in positions i through j, where j > i.
Define the prefix of a sequence s as any substring of the form s[1:i] =sys3...s;, with
0 <i <n. Also, define the suffix of s as any substring of the form si : n] = s;si1...5,,
with 1 <i <n+1. Note that s[1:0] is the empty prefix, and s[n + 1: n] is the empty
suffix. Let £* be the set of all possible sequences that can be constructed using the
symbols in ¥, including the empty sequence @ (which has length zero).

Let s =s152...5, and r =ryro...1r, be two sequences over X. We say that r is a
subsequence of s denoted r C s, if there exists a one-to-one mapping ¢ : [1,m] — [1,n],
such that r[i] = s[¢(i)] and for any two positions i, j inr,i < j = ¢@{) < ¢(j). In
other words, each position in r is mapped to a different position in s, and the order of
symbols is preserved, even though there may be intervening gaps between consecutive
elements of r in the mapping. If r C s, we also say that s contains r. The sequence r is
called a consecutive subsequence or substring of s provided rira...r, =5;Sj41 ... 8j4m—1,
ie,r[l:m]=s[j:j+m—1], with 1 < j <n—m+ 1. For substrings we do not allow
any gaps between the elements of r in the mapping.

Example 10.1. Let ¥ ={A,C, G, T}, and let s= ACTGAACG. Then r; = CGAAG
is a subsequence of s, and ro = CTGA is a substring of s. The sequence r3 = ACT is
259
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a prefix of s, and so is ry = ACTGA, whereas r5 = GAACG is one of the suffixes of
s.

Given a database D = {sq,s2,...,sn} of N sequences, and given some sequence r,
the support of r in the database D is defined as the total number of sequences in D
that contain r

sup(r) = ‘{Si €DIr Cs;}

The relative support of r is the fraction of sequences that contain r
rsup(r) = sup(r)/N

Given a user-specified minsup threshold, we say that a sequence r is frequent in
database D if sup(r) > minsup. A frequent sequence is maximal if it is not a subsequence
of any other frequent sequence, and a frequent sequence is closed if it is not a
subsequence of any other frequent sequence with the same support.

10.2 MINING FREQUENT SEQUENCES

For sequence mining the order of the symbols matters, and thus we have to consider
all possible permutations of the symbols as the possible frequent candidates. Contrast
this with itemset mining, where we had only to consider combinations of the items.
The sequence search space can be organized in a prefix search tree. The root of the
tree, at level 0, contains the empty sequence, with each symbol x € ¥ as one of its
children. As such, a node labeled with the sequence s = s1s2...s; at level k has children
of the form s’ = s155...85:5:41 at level k4 1. In other words, s is a prefix of each child
s’, which is also called an extension of s.

Example 10.2. Let ¥ ={A,C, G, T} and let the sequence database D consist of the
three sequences shown in Table 10.1. The sequence search space organized as a prefix
search tree is illustrated in Figure 10.1. The support of each sequence is shown within
brackets. For example, the node labeled A has three extensions AA, AG, and AT,
out of which AT is infrequent if minsup = 3.

The subsequence search space is conceptually infinite because it comprises all

sequences in X*, that is, all sequences of length zero or more that can be created using
symbols in X. In practice, the database D consists of bounded length sequences. Let [

Table 10.1. Example sequence

database
Id Sequence
S1 CAGAAGT
S2 TGACAG

S3 GAAGT
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Figure 10.1. Sequence search space: shaded ovals represent candidates that are infrequent; those
without support in brackets can be pruned based on an infrequent subsequence. Unshaded ovals
represent frequent sequences.

denote the length of the longest sequence in the database, then, in the worst case, we
will have to consider all candidate sequences oflength up to I, which gives the following
bound on the size of the search space:

ISP +IZP+--+IZ =02 (10.1)

since at level k there are |Z|¥ possible subsequences of length k.

10.2.1 Level-wise Mining: GSP

We can devise an effective sequence mining algorithm that searches the sequence prefix
tree using a level-wise or breadth-first search. Given the set of frequent sequences at
level k, we generate all possible sequence extensions or candidates at level k + 1. We
next compute the support of each candidate and prune those that are not frequent.
The search stops when no more frequent extensions are possible.

The pseudo-code for the level-wise, generalized sequential pattern (GSP) mining
method is shown in Algorithm 10.1. It uses the antimonotonic property of support to
prune candidate patterns, that is, no supersequence of an infrequent sequence can be
frequent, and all subsequences of a frequent sequence must be frequent. The prefix
search tree at level k is denoted C*®. Initially C' comprises all the symbols in X.
Given the current set of candidate k-sequences C*, the method first computes their
support (line 6). For each database sequence s; € D, we check whether a candidate
sequence r € C® is a subsequence of s;. If so, we increment the support of r. Once the
frequent sequences at level k have been found, we generate the candidates for level
k+1 (line 10). For the extension, each leaf r, is extended with the last symbol of any
other leaf r, that shares the same prefix (i.e., has the same parent), to obtain the new
candidate (k 4 1)-sequence 1., =1, +15[k] (line 18). If the new candidate r,, contains
any infrequent k-sequence, we prune it.
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ALGORITHM 10.1. Algorithm GSP

GSP (D, Z, minsup):
F <0
CY <« {#} // Initial prefix tree with single symbols
foreach s € ¥ do Add s as child of @ in CV with sup(s) <0
k< 1// k denotes the level
while C® =@ do
ComputeSupport (C®, D)
foreach leafseC® do

L if sup(r) > minsup then F <« FU {(r, sup(r))}

else remove s from C®

=

© 0 N O O W N

10 C*+D) « ExtendPrefixTree (C®)
no| k<k+1

12 return F®

ComputeSupport (C*®,D):
13 foreach s; € D do
14 foreach r e C% do
15 L if r Cs; then sup(r) < sup(r)+1
ExtendPrefixTree (C®):
16 foreach leaf r, € C® do
17 foreach leaf r, € Children(Parent(r,)) do

18 Tap < To+1k] // extend r, with last item of 1,
// prune if there are any infrequent subsequences
19 if r. e C®, for all r. C1gp, such that |re| = |rg| — 1 then
20 | Add 4 as child of r, with sup(ra) <0
21 if no extensions from r, then
22 L remove 1,, and all ancestors of r, with no extensions, from C*®

23 return C®

Example 10.3. For example, let us mine the database shown in Table 10.1 using
minsup = 3. That is, we want to find only those subsequences that occur in all
three database sequences. Figure 10.1 shows that we begin by extending the empty
sequence ¥ at level 0, to obtain the candidates A, C, G, and T at level 1. Out of these
C can be pruned because it is not frequent. Next we generate all possible candidates
at level 2. Notice that using A as the prefix we generate all possible extensions
AA, AG, and AT. A similar process is repeated for the other two symbols G and
T. Some candidate extensions can be pruned without counting. For example, the
extension GAAA obtained from GAA can be pruned because it has an infrequent
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subsequence AAA. The figure shows all the frequent sequences (unshaded), out of
which GAAG(3) and T(3) are the maximal ones.

The computational complexity of GSP is O(|Z|") as per Eq. (10.1), where [ is the
length of the longest frequent sequence. The I/O complexity is O(/ - D) because we
compute the support of an entire level in one scan of the database.

10.2.2 Vertical Sequence Mining: Spade

The Spade algorithm uses a vertical database representation for sequence mining. The
idea is to record for each symbol the sequence identifiers and the positions where
it occurs. For each symbol s € ¥, we keep a set of tuples of the form (i, pos(s)),
where pos(s) is the set of positions in the database sequence s; € D where symbol
s appears. Let L(s) denote the set of such sequence-position tuples for symbol
s, which we refer to as the poslist. The set of poslists for each symbol s € &
thus constitutes a vertical representation of the input database. In general, given
k-sequence r, its poslist £(r) maintains the list of positions for the occurrences of
the last symbol r[k] in each database sequence s;, provided r Cs;. The support of
sequence r is simply the number of distinct sequences in which r occurs, that is,

sup(r) = |£(r)].

Example 10.4. In Table 10.1, the symbol A occurs in s; at positions 2, 4, and 5.
Thus, we add the tuple (1,{2,4,5}) to L(A). Because A also occurs at positions 3
and 5 in sequence sp, and at positions 2 and 3 in s, the complete poslist for A is
{(1,{2,4,5}), (2,{3,5}), (1,{2,3})}. We have sup(A) = 3, as its poslist contains three
tuples. Figure 10.2 shows the poslist for each symbol, as well as other sequences.
For example, for sequence GT, we find that it is a subsequence of s; and sg3.
Even though there are two occurrences of GT in s;, the last symbol T occurs at
position 7 in both occurrences, thus the poslist for GT has the tuple (1,7). The
full poslist for GT is L(GT) = {(1,7),(3,5)}. The support of GT is sup(GT) =
|[L(GT)| =2.

Support computation in Spade is done via sequential join operations. Given
the poslists for any two k-sequences r, and r, that share the same (k — 1) length
prefix, the idea is to perform sequential joins on the poslists to compute the
support for the new (k + 1) length candidate sequence r,, =1, + 1,[k]. Given a tuple
(i,pos(rh[k])) € L(xp), we first check if there exists a tuple (i,pos(ra[k]» € L(x,),
that is, both sequences must occur in the same database sequence s;. Next, for
cach position p € pos(r,[k]), we check whether there exists a position g € pos(ra[k])
such that g < p. If yes, this means that the symbol 1,[k] occurs after the last
position of r, and thus we retain p as a valid occurrence of r,,. The poslist L(r,p)
comprises all such valid occurrences. Notice how we keep track of positions only
for the last symbol in the candidate sequence. This is because we extend sequences
from a common prefix, so there is no need to keep track of all the occurrences
of the symbols in the prefix. We denote the sequential join as L(ru,,) = L(ry) N
L(I‘b).
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The main advantage of the vertical approach is that it enables different
search strategies over the sequence search space, including breadth or depth-first

A G G T
1]245 T 1136 17
2| 35 5|4 2026 21
3] 23 3|14 3|5
AA AG GA GG
1745 1736 fﬂ; 1745 176 :Fﬂ TA TG
2| 5 2| 6 3l 2|35 2|6 a5 2[35 2]26
3] 3 3] 4 3[23 34
AAG GAA GAG
AAA 116 GA AGG 1[5 116
1[5 2|6 1[5 16 2|5 2|6
3]4 303 3]4
GAAG
176
2| 6
3| 4

Figure 10.2. Sequence mining via Spade: infrequent sequences with at least one occurrence are shown

shaded; those with zero support are not shown.

ALGORITHM 10.2. Algorithm Spade

[ N

o N O

// Initial Call: F <@, k<0,
P <« {(s,E(s)) |'s € X,sup(s) > minsup}
Spade (P, minsup, F, k):
foreach r, € P do
F < FU {0 5up(r)))
P, <0
foreach r, € P do
Tap = Tq + 1pK]
E(rab) = E(ra) N £(rb)
if sup(ryy) > minsup then
| Pa— PaU{(tas, L(a))

if P,#@ then Spade (P, minsup, F, k+1)
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search. Algorithm 10.2 shows the pseudo-code for Spade. Given a set of sequences
P that share the same prefix, along with their poslists, the method creates
a new prefix equivalence class P, for each sequence r, € P by performing
sequential joins with every sequence r, € P, including self-joins. After removing
the infrequent extensions, the new equivalence class P, is then processed recur-
sively.

Example 10.5. Consider the poslists for A and G shown in Figure 10.2. To obtain
L(AG), we perform a sequential join over the poslists L(A) and £(G). For the tuples
(1,{2,4,5}) € L(A) and (1, {3,6}) € L(G), both positions 3 and 6 for G, occur after
some occurrence of A, for example, at position 2. Thus, we add the tuple (1, {3, 6})
to L(AG). The complete poslist for AG is L(AG) = {(1, {3, 6}), (2,6), (3,4)}.

Figure 10.2 illustrates the complete working of the Spade algorithm, along with
all the candidates and their poslists.

10.2.3 Projection-Based Sequence Mining: PrefixSpan

Let D denote a database, and let s € ¥ be any symbol. The projected database with
respect to s, denoted Dy, is obtained by finding the the first occurrence of s in s;, say
at position p. Next, we retain in Dy only the suffix of s; starting at position p + 1.
Further, any infrequent symbols are removed from the suffix. This is done for each
sequence s; € D.

Example 10.6. Consider the three database sequences in Table 10.1. Given that the
symbol G first occurs at position 3 in s; = CAGAAGT, the projection of s; with
respect to G is the suffix AAGT. The projected database for G, denoted Dg is
therefore given as: {s1: AAGT, so: AAG, s3: AAGT}.

The main idea in PrefixSpan is to compute the support for only the individual
symbols in the projected database Dy, and then to perform recursive projections on

ALGORITHM 10.3. Algorithm PrefixSpan

// Initial Call: D, <D, r< @, F<@
PrefixSpan (D, r, minsup, F):
foreach s € ¥ such that sup(s, D;) > minsup do
ry=r+s // extend r by symbol s
F <« FU {(rs, sup(s, Dr))}
Dy <@ // create projected data for symbol s
foreach s; € D, do

s; < projection of s; w.r.t symbol s

Remove any infrequent symbols from s;

Add s} to Dy if s} #0

9 if Dy # @ then PrefixSpan (Dy, 1y, minsup, F)

0 N O s W N =
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the frequent symbols in a depth-first manner. The PrefixSpan method is outlined in
Algorithm 10.3. Here r is a frequent subsequence, and D, is the projected dataset
for r. Initially r is empty and D, is the entire input dataset D. Given a database
of (projected) sequences D,, PrefixSpan first finds all the frequent symbols in the
projected dataset. For each such symbol s, we extend r by appending s to obtain the
new frequent subsequence r;. Next, we create the projected dataset Dy by projecting
D, on symbol s. A recursive call to PrefixSpan is then made with ry and D;.

Example 10.7. Figure 10.3 shows the projection-based PrefixSpan mining approach
for the example dataset in Table 10.1 using minsup = 3. Initially we start with the
whole database D, which can also be denoted as Dy. We compute the support of each
symbol, and find that C is not frequent (shown crossed out). Among the frequent
symbols, we first create a new projected dataset Da. For s1, we find that the first A
occurs at position 2, so we retain only the suffix GAAGT. In s5, the first A occurs
at position 3, so the suffix is CAG. After removing C (because it is infrequent), we

Dy
si1 CAGAAGT
s TGACAG
S3 GAAGT

AB), &2, G3), T3

\

Da D¢
S1 GAAGT S1 AAGT DT
So AG So AAG So GAAG
S3 AGT S3 AAGT A(—l—} -G-Q—)
A@B), GO, T2 A@B3), G@3), 2
Daa Dca
s AG Dac s1 AG D
s G 51 AAG s AG Daa_
s G pvityenty ss AG 4
A, G(3) AB), GB)
Dcaa
S1 G
Dasc s2 G Daac
v . G 0
G(3)
Dgaac
]

Figure 10.3. Projection-based sequence mining: PrefixSpan.
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are left with only AG as the projection of s2 on A. In a similar manner we obtain the
projection for s3 as AGT. The left child of the root shows the final projected dataset
Da. Now the mining proceeds recursively. Given Dp, we count the symbol supports
in Dy, finding that only A and G are frequent, which will lead to the projection D a
and then Dag, and so on. The complete projection-based approach is illustrated in
Figure 10.3.

10.3 SUBSTRING MINING VIA SUFFIX TREES

We now look at efficient methods for mining frequent substrings. Let s be a sequence
having length 7, then there are at most O(n?) possible distinct substrings contained
in s. To see this consider substrings of length w, of which there are n — w4 1 possible
ones in s. Adding over all substring lengths we get

Z(n—w+1)=n+(n—1)~|—---—|—2~|—1=O(n2)

w=1

This is a much smaller search space compared to subsequences, and consequently we
can design more efficient algorithms for solving the frequent substring mining task. In
fact, we can mine all the frequent substrings in worst case O(Nn?) time for a dataset
D ={s1,s9,...,sn} with N sequences.

10.3.1 Suffix Tree

Let ¥ denote the alphabet, and let $ € ¥ be a terminal character used to mark
the end of a string. Given a sequence s, we append the terminal character so that
S = §152...5,8,4+1, where 5,11 = $, and the jth suffix of s is given as s[j :n+ 1] =
8iSj+1...8n41. The suffix tree of the sequences in the database D, denoted 7, stores
all the suffixes for each s; € D in a tree structure, where suffixes that share a common
prefix lie on the same path from the root of the tree. The substring obtained by
concatenating all the symbols from the root node to a node v is called the node label
of v, and is denoted as L(v). The substring that appears on an edge (v,, vp) is called an
edge label, and is denoted as L(v,, vy). A suffix tree has two kinds of nodes: internal
and leaf nodes. An internal node in the suffix tree (except for the root) has at least two
children, where each edge label to a child begins with a different symbol. Because the
terminal character is unique, there are as many leaves in the suffix tree as there are
unique suffixes over all the sequences. Each leaf node corresponds to a suffix shared
by one or more sequences in D.

It is straightforward to obtain a quadratic time and space suffix tree construction
algorithm. Initially, the suffix tree T is empty. Next, for each sequence s; € D, with
|si| = n;, we generate all its suffixes s;[j : n; + 1], with 1 < j <n;, and insert each of
them into the tree by following the path from the root until we either reach a leaf or
there is a mismatch in one of the symbols along an edge. If we reach a leaf, we insert
the pair (i, j) into the leaf, noting that this is the jth suffix of sequence s;. If there
is a mismatch in one of the symbols, say at position p > j, we add an internal vertex
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Figure 10.4. Suffix tree construction: (a)—(g) show the successive changes to the tree, after we add
the jth suffix of s1 = CAGAAGTS for j=1,...,7.

(e) j=5

just before the mismatch, and create a new leaf node containing (i, j) with edge label
silp :ni +1].

Example 10.8. Consider the database in Table 10.1 with three sequences. In
particular, let us focus on s; = CAGAAGT. Figure 10.4 shows what the suffix tree
T looks like after inserting the jth suffix of s; into 7. The first suffix is the entire
sequence s; appended with the terminal symbol; thus the suffix tree contains a single
leaf containing (1, 1) under the root (Figure 10.4a). The second suffix is AGAAGTS,
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Figure 10.5. Suffix tree for all three sequences in Table 10.1. Internal nodes store support information.

Leaves also record the support (not shown).

and Figure 10.4b shows the resulting suffix tree, which now has two leaves. The
third suffix GAAGTS begins with G, which has not yet been observed, so it creates
a new leaf in 7 under the root. The fourth suffix AAGTS$ shares the prefix A with
the second suffix, so it follows the path beginning with A from the root. However,
because there is a mismatch at position 2, we create an internal node right before
it and insert the leaf (1,4), as shown in Figure 10.4d. The suffix tree obtained after
inserting all of the suffixes of s; is shown in Figure 10.4g, and the complete suffix
tree for all three sequences is shown in Figure 10.5.

In terms of the time and space complexity, the algorithm sketched above requires
O(Nn?) time and space, where N is the number of sequences in D, and 7 is the longest
sequence length. The time complexity follows from the fact that the method always
inserts a new suffix starting from the root of the suffix tree. This means that in the
worst case it compares O(n) symbols per suffix insertion, giving the worst case bound
of O(n?) over all n suffixes. The space complexity comes from the fact that each suffix
is explicitly represented in the tree, taking n 4 (n — 1) +--- +1 = O(n?) space. Over all
the N sequences in the database, we obtain O(Nn?) as the worst case time and space
bounds.

Frequent Substrings

Once the suffix tree is built, we can compute all the frequent substrings by checking
how many different sequences appear in a leaf node or under an internal node. The
node labels for the nodes with support at least minsup yield the set of frequent
substrings; all the prefixes of such node labels are also frequent. The suffix tree can
also support ad hoc queries for finding all the occurrences in the database for any
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query substring q. For each symbol in ¢, we follow the path from the root until all
symbols in q have been seen, or until there is a mismatch at any position. If q is
found, then the set of leaves under that path is the list of occurrences of the query
q. On the other hand, if there is mismatch that means the query does not occur
in the database. In terms of the query time complexity, because we have to match
each character in g, we immediately get O(|q|) as the time bound (assuming that
|X] is a constant), which is independent of the size of the database. Listing all the
matches takes additional time, for a total time complexity of O(|q|+ k), if there are k
matches.

Example 10.9. Consider the suffix tree shown in Figure 10.5, which stores all the
suffixes for the sequence database in Table 10.1. To facilitate frequent substring
enumeration, we store the support for each internal as well as leaf node, that is,
we store the number of distinct sequence ids that occur at or under each node. For
example, the leftmost child of the root node on the path labeled A has support 3
because there are three distinct sequences under that subtree. If minsup = 3, then
the frequent substrings are A, AG, G, GA, and T. Out of these, the maximal ones are
AG, GA, and T. If minsup = 2, then the maximal frequent substrings are GAAGT
and CAG.

For ad hoc querying consider q = GAA. Searching for symbols in q starting from
the root leads to the leaf node containing the occurrences (1,3) and (3, 1), which
means that GAA appears at position 3 in s; and at position 1 in s3. On the other
hand if g = CAA, then the search terminates with a mismatch at position 3 after
following the branch labeled CAG from the root. This means that q does not occur
in the database.

10.3.2 Ukkonen’s Linear Time Algorithm

We now present a linear time and space algorithm for constructing suffix trees. We
first consider how to build the suffix tree for a single sequence s =s155...5,8,41, with
sns1 = $. The suffix tree for the entire dataset of N sequences can be obtained by
inserting each sequence one by one.

Achieving Linear Space

Let us see how to reduce the space requirements of a suffix tree. If an algorithm
stores all the symbols on each edge label, then the space complexity is O(n?), and we
cannot achieve linear time construction either. The trick is to not explicitly store all
the edge labels, but rather to use an edge-compression technique, where we store only
the starting and ending positions of the edge label in the input string s. That is, if an
edge label is given as s[i : j], then we represent is as the interval [i, j].

Example 10.10. Consider the suffix tree for s; = CAGAAGTS$ shown in Figure 10.4g.
The edge label CAGAAGTS for the suffix (1, 1) can be represented via the interval
[1,8] because the edge label denotes the substring s1[1 : 8]. Likewise, the edge label
AAGTS leading to suffix (1,2) can be compressed as [4,8] because AAGT$ =
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Figure 10.6. Suffix tree for s = CAGAAGTS$ using edge-compression.

s1[4 : 8]. The complete suffix tree for s; with compressed edge labels is shown in
Figure 10.6.

In terms of space complexity, note that when we add a new suffix to the tree
T, it can create at most one new internal node. As there are n suffixes, there are n
leaves in 7 and at most n internal nodes. With at most 2n nodes, the tree has at most
2n — 1 edges, and thus the total space required to store an interval for each edge is
22n—1)=4n—-2=0(n).

Achieving Linear Time
Ukkonen’s method is an online algorithm, that is, given a string s = s159...5,%$ it
constructs the full suffix tree in phases. Phase i builds the tree up to the i-th symbol
in s, that is, it updates the suffix tree from the previous phase by adding the next
symbol s;. Let 7; denote the suffix tree up to the ith prefix s[1:i], with 1 <i <n.
Ukkonen’s algorithm constructs 7; from 7;_1, by making sure that all suffixes including
the current character s; are in the new intermediate tree 7;. In other words, in the ith
phase, it inserts all the suffixes s[j : i] from j =1 to j =i into the tree 7;. Each such
insertion is called the jth extension of the ith phase. Once we process the terminal
character at position n+ 1 we obtain the final suffix tree 7 for s.

Algorithm 10.4 shows the code for a naive implementation of Ukkonen’s approach.
This method has cubic time complexity because to obtain 7; from 7;_; takes O(i?)
time, with the last phase requiring O(rn?) time. With n phases, the total time is O(n?).
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ALGORITHM 10.4. Algorithm NaiveUkkonen

NaiveUkkonen (s):

1 n<|s

s[n+1] < $ // append terminal character

T <« ¥ // add empty string as root

foreachi=1,...,n+1 do // phase i - construct 7;

foreach j=1,...,i do // extension j for phase i

// Insert s[j:i] into the suffix tree
Find end of the path with label s[j:i —1] in T
Insert s; at end of path;

gk WN

N O

8 return T

Our goal is to show that this time can be reduced to just O(n) via the optimizations
described in the following paragraghs.

Implicit Suffixes This optimization states that, in phase i, if the jth extension
s[j : i] is found in the tree, then any subsequent extensions will also be found, and
consequently there is no need to process further extensions in phase i. Thus, the suffix
tree 7; at the end of phase i has implicit suffixes corresponding to extensions j + 1
through i. It is important to note that all suffixes will become explicit the first time
we encounter a new substring that does not already exist in the tree. This will surely
happen in phase n + 1 when we process the terminal character $, as it cannot occur
anywhere else in s (after all, $ ¢ ).

Implicit Extensions Let the current phase be i, and let I <i —1 be the last explicit
suffix in the previous tree 7;_1. All explicit suffixes in 7;_; have edge labels of the form
[x,i — 1] leading to the corresponding leaf nodes, where the starting position x is node
specific, but the ending position must be i — 1 because s;_; was added to the end of
these paths in phase i — 1. In the current phase i, we would have to extend these paths
by adding s; at the end. However, instead of explicitly incrementing all the ending
positions, we can replace the ending position by a pointer e which keeps track of the
current phase being processed. If we replace [x,i — 1] with [x, e], then in phase i, if we
set e =i, then immediately all the I existing suffixes get implicitly extended to [x,i].
Thus, in one operation of incrementing e we have, in effect, taken care of extensions
1 through / for phase i.

Example 10.11. Let s; = CAGAAGTS. Assume that we have already performed the
first six phases, which result in the tree Tg shown in Figure 10.7a. The last explicit
suffix in 7g is [ = 4. In phase i =7 we have to execute the following extensions:

CAGAAGT extension 1
AGAAGT extension 2
GAAGT extension 3
AAGT extension 4
AGT extension 5

GT extension 6

T extension 7
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Figure 10.7. Implicit extensions in phase i=7. Last explicit suffix in 7g is 1=4 (shown double-circled).
Edge labels shown for convenience; only the intervals are stored.

At the start of the seventh phase, we set e = 7, which yields implicit extensions for
all suffixes explicitly in the tree, as shown in Figure 10.7b. Notice how symbol s7 =T
is now implicitly on each of the leaf edges, for example, the label [5,e] = AG in Tg
now becomes [5,¢] = AGT in 77. Thus, the first four extensions listed above are
taken care of by simply incrementing e. To complete phase 7 we have to process the
remaining extensions.

Skip/Count Trick For the jth extension of phase i, we have to search for the substring
s[j :i — 1] so that we can add s; at the end. However, note that this string must exist
in 7;_1 because we have already processed symbol s;_; in the previous phase. Thus,
instead of searching for each character in s[j : i — 1] starting from the root, we first
count the number of symbols on the edge beginning with character s;; let this length
be m. If m is longer than the length of the substring (i.e., if m > i — j), then the
substring must end on this edge, so we simply jump to position i — j and insert s;.
On the other hand, if m <i — j, then we can skip directly to the child node, say v,,
and search for the remaining string s[j +m : i — 1] from v, using the same skip/count
technique. With this optimization, the cost of an extension becomes proportional
to the number of nodes on the path, as opposed to the number of characters in
s[j:i—1].

Suffix Links We saw that with the skip/count optimization we can search for the
substring s[j : i — 1] by following nodes from parent to child. However, we still have
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ALGORITHM 10.5. Algorithm Ukkonen

Ukkonen (s):
1 n<|s
s[n+1] < $ // append terminal character
T <@ // add empty string as root
[ <0 // last explicit suffix
foreachi=1,...,n+1 do // phase i - construct 7;
e<1i// implicit extensions
foreach j=1+41,...,i do // extension j for phase i
// Insert s[j:i] into the suffix tree
8 Find end of s[j :i — 1] in T via skip/count and suffix links
9 if s, €T then // implicit suffixes
10 | break
11 else
12 Insert s; at end of path
13 L Set last explicit suffix [ if needed

N O O ke WN

14 return T

to start from the root node each time. We can avoid searching from the root via the
use of suffix links. For each internal node v, we maintain a link to the internal node
vy, where L(v,) is the immediate suffix of L(v,). In extension j —1, let v, denote the
internal node under which we find s[j —1:i], and let m be the length of the node label
of v,. To insert the jth extension s[j : i], we follow the suffix link from v, to another
node, say vy, and search for the remaining substring s[j +m —1:i — 1] from v,. The
use of suffix links allows us to jump internally within the tree for different extensions,
as opposed to searching from the root each time. As a final observation, if extension
j creates a new internal node, then its suffix link will point to the new internal node
that will be created during extension j 4+ 1.

The pseudo-code for the optimized Ukkonen’s algorithm is shown in
Algorithm 10.5. It is important to note that it achieves linear time and space only with
all of the optimizations in conjunction, namely implicit extensions (line 6), implicit
suffixes (line 9), and skip/count and suffix links for inserting extensions in 7 (line 8).

Example 10.12. Let us look at the execution of Ukkonen’s algorithm on the sequence
s1 = CAGAAGTS, as shown in Figure 10.8. In phase 1, we process character s; = C
and insert the suffix (1,1) into the tree with edge label [1,e] (see Figure 10.8a). In
phases 2 and 3, new suffixes (1,2) and (1,3) are added (see Figures 10.8b—-10.8c).
For phase 4, when we want to process s4 = A, we note that all suffixes up to [ =3
are already explicit. Setting e = 4 implicitly extends all of them, so we have only
to make sure that the last extension (j =4) consisting of the single character A
is in the tree. Searching from the root, we find A in the tree implicitly, and we
thus proceed to the next phase. In the next phase, we set e = 5, and the suffix
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Figure 10.8. Ukkonen’s linear time algorithm for suffix tree construction. Steps (a)—(g) show the
successive changes to the tree after the ith phase. The suffix links are shown with dashed lines. The
double-circled leaf denotes the last explicit suffix in the tree. The last step is not shown because
when e =8, the terminal character $ will not alter the tree. All the edge labels are shown for ease of
understanding, although the actual suffix tree keeps only the intervals for each edge.

(1,4) becomes explicit when we try to add the extension AA, which is not in the
tree. For e = 6, we find the extension AG already in the tree and we skip ahead
to the next phase. At this point the last explicit suffix is still (1,4). For e =7, T
is a previously unseen symbol, and so all suffixes will become explicit, as shown in
Figure 10.8g.

It is instructive to see the extensions in the last phase (i = 7). As
described in Example 10.11, the first four extensions will be done implic-
itly. Figure 10.9a shows the suffix tree after these four extensions. For
extension 5, we begin at the last explicit leaf, follow its parent’s suffix
link, and begin searching for the remaining characters from that point.
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Figure 10.9. Extensions in phase i = 7. Initially the last explicit suffix is 1 =4 and is shown
double-circled. All the edge labels are shown for convenience; the actual suffix tree keeps only the

intervals for each edge.

root, so we search for

In our example, the suffix link points to the
s[5: 7] = AGT from the root. We skip to node va, and look for the remaining string

GT, which has a mismatch inside the edge [3, e]. We thus create a new internal node
after G, and insert the explicit suffix (1,5), as shown in Figure 10.9b. The next
extension s[6 : 7] = GT begins at the newly created leaf node (1,5). Following the
closest suffix link leads back to the root, and a search for GT gets a mismatch on
the edge out of the root to leaf (1,3). We then create a new internal node vg at
that point, add a suffix link from the previous internal node vag to vg, and add a
new explicit leaf (1,6), as shown in Figure 10.9c. The last extension, namely j =7,
correspondingto s[7: 7] = T, results in making all the suffixes explicit because the
symbol T has been seen for the first time. The resulting tree is shown in Figure 10.8g.
Once s; has been processed, we can then insert the remaining sequences in the
database D into the existing suffix tree. The final suffix tree for all three sequences
is shown in Figure 10.5, with additional suffix links (not shown) from all the internal

nodes.

Ukkonen’s algorithm has time complexity of O(n) for a sequence of length n
because it does only a constant amount of work (amortized) to make each suffix
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explicit. Note that, for each phase, a certain number of extensions are done implicitly
just by incrementing e. Out of the i extensions from j =1 to j =i, let us say that [
are done implicitly. For the remaining extensions, we stop the first time some suffix
is implicitly in the tree; let that extension be k. Thus, phase i needs to add explicit
suffixes only for suffixes / + 1 through k — 1. For creating each explicit suffix, we
perform a constant number of operations, which include following the closest suffix
link, skip/counting to look for the first mismatch, and inserting if needed a new
suffix leaf node. Because each leaf becomes explicit only once, and the number of
skip/count steps are bounded by O(n) over the whole tree, we get a worst-case O(n)
time algorithm. The total time over the entire database of N sequences is thus O(Nn),
if n is the longest sequence length.

10.4 FURTHER READING
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and Agrawal (March 1996). Spade is described in Zaki (2001), and the PrefixSpan
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10.5 EXERCISES

Q1. Consider the database shown in Table 10.2. Answer the following questions:
(a) Let minsup =4. Find all frequent sequences.
(b) Given that the alphabet is ¥ ={A, C, G, T}. How many possible sequences of length
k can there be?

Q2. Given the DNA sequence database in Table 10.3, answer the following questions using
minsup =4
(a) Find the maximal frequent sequences.
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Table 10.2. Sequence database for Q1

Id Sequence
$1 AATACAAGAAC
So GTATGGTGAT

S3 AACATGGCCAA
S4 AAGCGTGGTCAA

(b) Find all the closed frequent sequences.

(¢) Find the maximal frequent substrings.

(d) Show how Spade would work on this dataset.
(e)

Show the steps of the PrefixSpan algorithm.

Table 10.3. Sequence database for

Q2

Id Sequence

S1 ACGTCACG
So TCGA

S3 GACTGCA
Sq CAGTC

S5 AGCT

S6 TGCAGCTC
Sy AGTCAG

Q3. Given s = AABBACBBAA, and ¥ = {A,B,C}. Define

Sequence Mining

support as the number

of occurrence of a subsequence in s. Using minsup = 2, answer the following

questions:

(a) Show how the vertical Spade method can be extended to mine all frequent

substrings (consecutive subsequences) in s.

(b) Construct the suffix tree for s using Ukkonen’s method. Show all intermediate

steps, including all suffix links.

(¢) Using the suffix tree from the previous step, find all the occurrences of the query

q = ABBA allowing for at most two mismatches.

(d) Show the suffix tree when we add another character A just before the $. That is,
you must undo the effect of adding the $, add the new symbol A, and then add $

back again.

(e) Describe an algorithm to extract all the maximal frequent substrings from a suffix

tree. Show all maximal frequent substrings in s.

Q4. Consider a bitvector based approach for mining frequent subsequences. For instance,

in Table 10.2, for s1, the symbol C occurs at positions 5 and 11. Thus, the bitvector

for C in s is given as 00001000001. Because C does not appear in s2 its bitvector can

be omitted for so. The complete set of bitvectors for symbol C is

(s1,00001000001)
(s3,00100001100)
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Q5.

Q6.

QT.

Table 10.4. Sequences for Q5

Id Time Ttems
10 A,B
20 B
o 30 A.B
40 A,C
20 A,C
So 30 A B,C
50 B
10 A
30 B
S3 40 A
50 C
60 B
30 A,B
40 A
S4 50 B
60 C

(s4,000100000100)

Given the set of bitvectors for each symbol show how we can mine all frequent
subsequences by using bit operations on the bitvectors. Show the frequent subsequences
and their bitvectors using minsup = 4.

Consider the database shown in Table 10.4. Each sequence comprises itemset events
that happen at the same time. For example, sequence s; can be considered to be a
sequence of itemsets (AB)10(B)20(AB)30(AC)40, where symbols within brackets are
considered to co-occur at the same time, which is given in the subscripts. Describe an
algorithm that can mine all the frequent subsequences over itemset events. The itemsets
can be of any length as long as they are frequent. Find all frequent itemset sequences
with minsup = 3.

The suffix tree shown in Figure 10.5 contains all suffixes for the three sequences sy, s2, s3

in Table 10.1. Note that a pair (i, j) in a leaf denotes the jth suffix of sequence s;.

(a) Add a new sequence s4 = GAAGCAGAA to the existing suffix tree, using the
Ukkonen algorithm. Show the last character position (e), along with the suffixes
(/) as they become explicit in the tree for s4. Show the final suffix tree after all
suffixes of s4 have become explicit.

(b) Find all closed frequent substrings with minsup = 2 using the final suffix
tree.

Given the following three sequences:
s1: GAAGT
so : CAGAT
s3: ACGT
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Find all the frequent subsequences with minsup = 2, but allowing at most a gap of 1
position between successive sequence elements.



Graph Pattern Mining

Graph data is becoming increasingly more ubiquitous in today’s networked world.
Examples include social networks as well as cell phone networks and blogs. The
Internet is another example of graph data, as is the hyperlinked structure of the
World Wide Web (WWW). Bioinformatics, especially systems biology, deals with
understanding interaction networks between various types of biomolecules, such as
protein—protein interactions, metabolic networks, gene networks, and so on. Another
prominent source of graph data is the Semantic Web, and linked open data, with
graphs represented using the Resource Description Framework (RDF) data model.

The goal of graph mining is to extract interesting subgraphs from a single large
graph (e.g., a social network), or from a database of many graphs. In different
applications we may be interested in different kinds of subgraph patterns, such as
subtrees, complete graphs or cliques, bipartite cliques, dense subgraphs, and so on.
These may represent, for example, communities in a social network, hub and authority
pages on the WWW, cluster of proteins involved in similar biochemical functions, and
so on. In this chapter we outline methods to mine all the frequent subgraphs that
appear in a database of graphs.

11.1 ISOMORPHISM AND SUPPORT

A graph is a pair G = (V,E) where V is a set of vertices, and ECV x V is a set of
edges. We assume that edges are unordered, so that the graph is undirected. If (u, v)
is an edge, we say that u and v are adjacent and that v is a neighbor of u, and vice
versa. The set of all neighbors of u in G is given as N(u) = {v € V| (u,v) € E}. A labeled
graph has labels associated with its vertices as well as edges. We use L(u) to denote
the label of the vertex u, and L(u, v) to denote the label of the edge (u,v), with the
set of vertex labels denoted as Xy and the set of edge labels as ¥g. Given an edge
(u,v) € G, the tuple (u,v,L(u),L(v),L(u,v)) that augments the edge with the node
and edge labels is called an extended edge.

Example 11.1. Figure 11.1a shows an example of an unlabeled graph, whereas
Figure 11.1b shows the same graph, with labels on the vertices, taken from the vertex

281
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Figure 11.1. An unlabeled (a) and labeled (b) graph with eight vertices.

label set ¥y = {a, b, c,d}. In this example, edges are all assumed to be unlabeled,
and are therefore edge labels are not shown. Considering Figure 11.1b, the label
of vertex vy is L(vy) = @, and its neighbors are N(vyq) = {v1, v2, v3, V5, v7, v8}. The
edge (vyq,v1) leads to the extended edge (v4,v1,a,a), where we omit the edge label
L(vg, v1) because it is empty.

Subgraphs

A graph G' = (V',E’) is said to be a subgraph of G if V' CV and E C E. Note
that this definition allows for disconnected subgraphs. However, typically data mining
applications call for connected subgraphs, defined as a subgraph G’ such that V' C 'V,
E' CE, and for any two nodes u,v € V', there exists a path from u to v in G'.

Example 11.2. The graph defined by the bold edges in Figure 11.2a is a subgraph
of the larger graph; it has vertex set V' = {v1,v2, v4, U5, vg, vg}. However, it is a
disconnected subgraph. Figure 11.2b shows an example of a connected subgraph on
the same vertex set V'.

Graph and Subgraph Isomorphism

A graph G’ = (V',E’) is said to be isomorphic to another graph G = (V,E) if there
exists a bijective function ¢ : V' — V, i.e., both injective (into) and surjective (onto),
such that

1. (u,v) €E < (p(u),p(v)) €E
2. Yue V', L(u) =L(¢u))
3. Y(u,v) e E/, L(u,v) =L @), ¢ (v))

In other words, the isomorphism ¢ preserves the edge adjacencies as well as the vertex
and edge labels. Put differently, the extended tuple (u, v, L(u), L(v), L(u, v)) € G’ if and
only if (¢ (u), ¢ (v), L(¢ ), L(¢ (v)), L@ ), ¢ (v)) € G.

If the function ¢ is only injective but not surjective, we say that the mapping ¢
is a subgraph isomorphism from G’ to G. In this case, we say that G’ is isomorphic
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Figure 11.2. A subgraph (a) and connected subgraph (b).

G2 Gg G4

Gy
u1 vy (a w1 (a x1(b
(a) U3<a w2<a) X2<a)
I/lg I/l4 Vg b U4 w3 b X3 b

Figure 11.3. Graph and subgraph isomorphism.

to a subgraph of G, that is, G’ is subgraph isomorphic to G, denoted G’ C G; we also
say that G contains G'.

Example 11.3. In Figure 11.3, G; = (V1,E;) and Gy = (V3,E3) are isomorphic
graphs. There are several possible isomorphisms between G; and Gs. An example
of an isomorphism ¢ : Vo — V7 is

(1) =uy ¢ (v2) =us3 ¢ (v3) =uz ¢ (vg) =uy

The inverse mapping ¢! specifies the isomorphism from G; to Gy. For example,
¢ (u1) =v1, ¢~ (u2) = v3, and so on. The set of all possible isomorphisms from Go
to G1 are as follows:

|vi v vz
¢1 | ur us uz uy
¢2 | ur wug uz ug
3 | uz uz wur uy
Q4 | u2 ug w1 ug
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The graph Gg is subgraph isomorphic to both G; and Gs. The set of all possible
subgraph isomorphisms from Gz to G; are as follows:

| wip w2 w3
¢1 | ur uz  ug
G2 | ur uz  uy
3 | uz w1 ug
Gy | u2 w1 uy

The graph Gy4 is not subgraph isomorphic to either G; or Gs, and it is also not
isomorphic to Gs because the extended edge (x1,x3,b,b) has no possible mappings
in Gl, G2 or Gg.

Subgraph Support
Given a database of graphs, D ={G1, Go, ..., G,}, and given some graph G, the support
of G in D is defined as follows:

sup(G) =|{Gi e D1 G € Gy}

The support is simply the number of graphs in the database that contain G. Given a
minsup threshold, the goal of graph mining is to mine all frequent connected subgraphs
with sup(G) > minsup.

To mine all the frequent subgraphs, one has to search over the space of all possible
graph patterns, which is exponential in size. If we consider subgraphs with m vertices,
then there are (';) = O(m?) possible edges. The number of possible subgraphs with
m nodes is then O(2’"2) because we may decide either to include or exclude each of
the edges. Many of these subgraphs will not be connected, but O(2’"2) is a convenient
upper bound. When we add labels to the vertices and edges, the number of labeled
graphs will be even more. Assume that | Xy | =|Xg| =s, then there are s™ possible ways
to label the vertices and there are 5" ways to label the edges. Thus, the number of
possible labeled subgraphs with m vertices is gm? gmgm?® O((2s)’"2). This is the worst
case bound, as many of these subgraphs will be isomorphic to each other, with the
number of distinct subgraphs being much less. Nevertheless, the search space is still
enormous because we typically have to search for all subgraphs ranging from a single
vertex to some maximum number of vertices given by the largest frequent subgraph.

There are two main challenges in frequent subgraph mining. The first is to
systematically generate candidate subgraphs. We use edge-growth as the basic
mechanism for extending the candidates. The mining process proceeds in a
breadth-first (level-wise) or a depth-first manner, starting with an empty subgraph
(i.e., with no edge), and adding a new edge each time. Such an edge may either connect
two existing vertices in the graph or it may introduce a new vertex as one end of a
new edge. The key is to perform nonredundant subgraph enumeration, such that we
do not generate the same graph candidate more than once. This means that we have to
perform graph isomorphism checking to make sure that duplicate graphs are removed.
The second challenge is to count the support of a graph in the database. This involves
subgraph isomorphism checking, as we have to find the set of graphs that contain a
given candidate.
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11.2 CANDIDATE GENERATION

An effective strategy to enumerate subgraph patterns is the so-called rightmost path
extension. Given a graph G, we perform a depth-first search (DFS) over its vertices,
and create a DFS spanning tree, that is, one that covers or spans all the vertices.
Edges that are included in the DFS tree are called forward edges, and all other edges
are called backward edges. Backward edges create cycles in the graph. Once we have
a DF'S tree, define the rightmost path as the path from the root to the rightmost leaf,
that is, to the leaf with the highest index in the DFS order.

Example 11.4. Consider the graph shown in Figure 11.4a. One of the possible DFS
spanning trees is shown in Figure 11.4b (illustrated via bold edges), obtained
by starting at v; and then choosing the vertex with the smallest index at each
step. Figure 11.5 shows the same graph (ignoring the dashed edges), rearranged to
emphasize the DFS tree structure. For instance, the edges (v1,v2) and (vg,v3) are
examples of forward edges, whereas (vs, v1), (v4,v1), and (vg,v1) are all backward
edges. The bold edges (v1,vs), (vs,v7) and (v7, vg) comprise the rightmost path.

For generating new candidates from a given graph G, we extend it by adding a
new edge to vertices only on the rightmost path. We can either extend G by adding
backward edges from the rightmost vertex to some other vertex on the rightmost path
(disallowing self-loops or multi-edges), or we can extend G by adding forward edges
from any of the vertices on the rightmost path. A backward extension does not add a
new vertex, whereas a forward extension adds a new vertex.

For systematic candidate generation we impose a total order on the extensions, as
follows: First, we try all backward extensions from the rightmost vertex, and then we
try forward extensions from vertices on the rightmost path. Among the backward edge
extensions, if u, is the rightmost vertex, the extension (u,,v;) is tried before (u,,v;)
if i < j. In other words, backward extensions closer to the root are considered before
those farther away from the root along the rightmost path. Among the forward edge
extensions, if v, is the new vertex to be added, the extension (v;,v,) is tried before

U8

(b)
Figure 11.4. A graph (a) and a possible depth-first spanning tree (b).
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Figure 11.5. Rightmost path extensions. The bold path is the rightmost path in the DFS tree. The
rightmost vertex is vg, shown double circled. Solid black lines (thin and bold) indicate the forward
edges, which are part of the DFS tree. The backward edges, which by definition are not part of the
DF'S tree, are shown in gray. The set of possible extensions on the rightmost path are shown with
dashed lines. The precedence ordering of the extensions is also shown.

(vj,vy) if i > j. In other words, the vertices farther from the root (those at greater
depth) are extended before those closer to the root. Also note that the new vertex will
be numbered x =r 41, as it will become the new rightmost vertex after the extension.

Example 11.5. Consider the order of extensions shown in Figure 11.5. Node vg is the
rightmost vertex; thus we try backward extensions only from vg. The first extension,
denoted #1 in Figure 11.5, is the backward edge (vg, v1) connecting vg to the root,
and the next extension is (vs,vs), denoted #2, which is also backward. No other
backward extensions are possible without introducing multiple edges between the
same pair of vertices. The forward extensions are tried in reverse order, starting
from the rightmost vertex vg (extension denoted as #3) and ending at the root
(extension denoted as #6). Thus, the forward extension (vg, v,), denoted #3, comes
before the forward extension (v7,v,), denoted #4, and so on.

11.2.1 Canonical Code

When generating candidates using rightmost path extensions, it is possible that
duplicate, that is, isomorphic, graphs are generated via different extensions. Among
the isomorphic candidates, we need to keep only one for further extension, whereas the
others can be pruned to avoid redundant computation. The main idea is that if we can
somehow sort or rank the isomorphic graphs, we can pick the canonical representative,
say the one with the least rank, and extend only that graph.
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Gy Go Gs
U1 V1 U1
q q q r
r
r r r r
U3 0 bl@ Vs é V4 U3
t11=(v1,v2,a,a,q) to1 = (v1,v2,4a,a,q) t31 = (v1,v2,4a,a,q)
t1g =(v2,v3,a,a,r) tag = (v2,v3,a,b,r) t33 = (v2,v3,4a,a,r)
t13 ={(v3,v1,4a,a,r) t23 = (v2,v4,0a,a,r) 133 =(v3,v1,4a,4a,r)
t1y = (v2,v4,a,b,1) tog = (v4,v1,a,a,r) t34 = (V1,v4,a,b,7)
DFScode(Gy) DFScode(Gs) DFScode(G3)

Figure 11.6. Canonical DFS code. G is canonical, whereas G2 and G3 are noncanonical. Vertex label
set Xy = {a, b}, and edge label set g = {q,r}. The vertices are numbered in DFS order.

Let G be a graph and let Tg be a DFS spanning tree for G. The DFS tree Tq
defines an ordering of both the nodes and edges in G. The DFS node ordering is
obtained by numbering the nodes consecutively in the order they are visited in the
DFS walk. We assume henceforth that for a pattern graph G the nodes are numbered
according to their position in the DFS ordering, so that i < j implies that v; comes
before v; in the DFS walk. The DFS edge ordering is obtained by following the edges
between consecutive nodes in DFS order, with the condition that all the backward
edges incident with vertex v; are listed before any of the forward edges incident with
it. The DFS code for a graph G, for a given DFS tree Tq, denoted DFScode(G), is
defined as the sequence of extended edge tuples of the form (v,-, v;, L(v;), L(v;), L(v;, vj)>
listed in the DF'S edge order.

Example 11.6. Figure 11.6 shows the DFS codes for three graphs, which are all
isomorphic to each other. The graphs have node and edge labels drawn from the
label sets Xv = {a,b} and Xg = {q,r}. The edge labels are shown centered on the
edges. The bold edges comprise the DFS tree for each graph. For Gy, the DFS node
ordering is vy, va, v3, v4, whereas the DFS edge ordering is (v1, v2), (v2,v3), (v3,v1),
and (v2,v4). Based on the DFS edge ordering, the first tuple in the DFS code for
G is therefore (vy,v2,a,a,q). The next tuple is (vs, v3,a,a,r) and so on. The DFS
code for each graph is shown in the corresponding box below the graph.

Canonical DFS Code
A subgraph is canonical if it has the smallest DF'S code among all possible isomorphic
graphs, with the ordering between codes defined as follows. Let #; and 2 be any two
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DFS code tuples:
t1 = (vi, v;, L(v;), L(v)), L(v;, v)))
Ir= (U)m Uy, L(vy), L(Uy), L(vy, Uy))
We say that #; is smaller than to, written 1 < to, iff

i) (vi,v;) <, (v, vy), 01
ii) (vi,v;) = (vy, vy) and (11.1)
(L(v), L), L(v;, v))) <; (L(vy), L(vy), L(vy, vy))

where <, is an ordering on the edges and <; is an ordering on the vertex and edge
labels. The label order <; is the standard lexicographic order on the vertex and edge
labels. The edge order <, is derived from the rules for rightmost path extension,
namely that all of a node’s backward extensions must be considered before any
forward edge from that node, and deep DFS trees are preferred over bushy DFS
trees. Formally, Let e;; = (vi,v;) and ey, = (vy,vy) be any two edges. We say that
eij <eeyy iff

Condition (1) If ¢;; and e,, are both forward edges, then (a) j <y, or (b) j =y and
i > x. That is, (a) a forward extension to a node earlier in the DFS
node order is smaller, or (b) if both the forward edges point to a node
with the same DFS node order, then the forward extension from a node
deeper in the tree is smaller.

Condition (2) If ¢; and e,, are both backward edges, then (a) i < x, or (b) i =x
and j < y. That is, (a) a backward edge from a node earlier in the
DFS node order is smaller, or (b) if both the backward edges originate
from a node with the same DFS node order, then the backward edge
to a node earlier in DFS node order (i.e., closer to the root along the
rightmost path) is smaller.

Condition (3) If e; is a forward and e,, is a backward edge, then j < x. That is, a
forward edge to a node earlier in the DFS node order is smaller than a
backward edge from that node or any node that comes after it in DFS
node order.

Condition (4) If ¢; is a backward and ey, is a forward edge, then i < y. That is, a
backward edge from a node earlier in DFS node order is smaller than
a forward edge to any later node.

Given any two DFS codes, we can compare them tuple by tuple to check which is
smaller. In particular, the canonical DFS code for a graph G is defined as follows:

C= H(l}i/n {DFScode(G’) | G’ is isomorphic to G]

Given a candidate subgraph G, we can first determine whether its DFS code is
canonical or not. Only canonical graphs need to be retained for extension, whereas
noncanonical candidates can be removed from further consideration.
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Example 11.7. Consider the DFS codes for the three graphs shown in Figure 11.6.
Comparing G; and Gg, we find that #1; =21, but t12 < t22 because (a,a,r) <, {(a,b,r).
Comparing the codes for G; and Gs, we find that the first three tuples are equal
for both the graphs, but f14 < f34 because

(viv vj) = (U2, U4) <e (vlv U4) = (UX, vy)

due to condition (1) above. That is, both are forward edges, and we have v; = vy =v,
with v; = vy > v; = v,. In fact, it can be shown that the code for G; is the canonical
DFS code for all graphs isomorphic to Gy. Thus, G; is the canonical candidate.

11.3 THE GSPAN ALGORITHM

We describe the gSpan algorithm to mine all frequent subgraphs from a database
of graphs. Given a database D = {Gy, Go,...,G,} comprising n graphs, and given
a minimum support threshold minsup, the goal is to enumerate all (connected)
subgraphs G that are frequent, that is, sup(G) > minsup. In gSpan, each graph is
represented by its canonical DFS code, so that the task of enumerating frequent
subgraphs is equivalent to the task of generating all canonical DFS codes for frequent
subgraphs. Algorithm 11.1 shows the pseudo-code for gSpan.

gSpan enumerates patterns in a depth-first manner, starting with the empty code.
Given a canonical and frequent code C, gSpan first determines the set of possible
edge extensions along the rightmost path (line 1). The function RightMostPath-
Extensions returns the set of edge extensions along with their support values, £. Each
extended edge ¢ in £ leads to a new candidate DFS code C' = CU{¢}, with support
sup(C) = sup(r) (lines 3—4). For each new candidate code, gSpan checks whether it
is frequent and canonical, and if so gSpan recursively extends C’ (lines 5-6). The
algorithm stops when there are no more frequent and canonical extensions possible.

ALGORITHM 11.1. Algorithm gSpan

// Initial Call: C<« ¢

gSpan (C, D, minsup):

& < RightMostPath-Extensions(C,D) // extensions and supports

foreach (¢, sup(t)) € € do

C' <« CUt // extend the code with extended edge tuple ¢

sup(C') <= sup(t) // record the support of new extension

// recursively call GSpaN if code is frequent and
canonical

5 if sup(C’) > minsup and IsCanonical (C") then

6 L gSpan (C', D, minsup)

L N
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Figure 11.7. Example graph database.

Example 11.8. Consider the example graph database comprising G; and Gy shown
in Figure 11.7. Let minsup = 2, that is, assume that we are interested in mining
subgraphs that appear in both the graphs in the database. For each graph the node
labels and node numbers are both shown, for example, the node a'® in G; means
that node 10 has label a.

Figure 11.8 shows the candidate patterns enumerated by gSpan. For each
candidate the nodes are numbered in the DFS tree order. The solid boxes show
frequent subgraphs, whereas the dotted boxes show the infrequent ones. The dashed
boxes represent noncanonical codes. Subgraphs that do not occur even once are not
shown. The figure also shows the DFS codes and their corresponding graphs.

The mining process begins with the empty DFS code Cy corresponding to the
empty subgraph. The set of possible 1-edge extensions comprises the new set of
candidates. Among these, Cs is pruned because it is not canonical (it is isomorphic to
C5), whereas Cj is pruned because it is not frequent. The remaining two candidates,
C; and Cs, are both frequent and canonical, and are thus considered for further
extension. The depth-first search considers C; before Cy, with the rightmost path
extensions of C; being Cs; and Cg. However, Cg is not canonical; it is isomorphic
to Cs, which has the canonical DFS code. Further extensions of Cs are processed
recursively. Once the recursion from C; completes, gSpan moves on to Cy, which will
be recursively extended via rightmost edge extensions as illustrated by the subtree
under C,. After processing Cy, gSpan terminates because no other frequent and
canonical extensions are found. In this example, C;2 is a maximal frequent subgraph,
that is, no supergraph of Cjs is frequent.

This example also shows the importance of duplicate elimination via canon-
ical checking. The groups of isomorphic subgraphs encountered during the
execution of gSpan are as follows: {Cs, Cs}, {Cs,Cg, Ci7}, {Cr,Ci9}, {Cg, Cosl,
{Ca0, Ca1,Caa,Coy}, and {Cio,Cy3,C14}. Within each group the first graph is
canonical and thus the remaining codes are pruned.

For a complete description of gSpan we have to specify the algorithm for
enumerating the rightmost path extensions and their support, so that infrequent
patterns can be eliminated, and the procedure for checking whether a given DFS
code is canonical, so that duplicate patterns can be pruned. These are detailed next.
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Figure 11.8. Frequent graph mining: minsup = 2. Solid boxes indicate the frequent subgraphs, dotted
the infrequent, and dashed the noncanonical subgraphs.
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11.3.1 Extension and Support Computation

The support computation task is to find the number of graphs in the database D that
contain a candidate subgraph, which is very expensive because it involves subgraph
isomorphism checks. gSpan combines the tasks of enumerating candidate extensions
and support computation.

Assume that D ={G1, Go, ..., G, } comprises n graphs. Let C={t1, 12, ..., #} denote
a frequent canonical DFS code comprising k edges, and let G(C) denote the graph
corresponding to code C. The task is to compute the set of possible rightmost path
extensions from C, along with their support values, which is accomplished via the
pseudo-code in Algorithm 11.2.

Given code C, gSpan first records the nodes on the rightmost path (R), and the
rightmost child (u,). Next, gSpan considers each graph G; € D. If C =@, then each
distinct label tuple of the form (L(x),L(y),L(x,y)) for adjacent nodes x and y in
G; contributes a forward extension (0, 1,L(x), L(y),L(x,y)) (lines 6-8). On the other
hand, if C is not empty, then gSpan enumerates all possible subgraph isomorphisms ®;
between the code C and graph G; via the function SubgraphIsomorphisms (line 10).
Given subgraph isomorphism ¢ € ®;, gSpan finds all possible forward and backward
edge extensions, and stores them in the extension set £.

Backward extensions (lines 12-15) are allowed only from the rightmost child %, in
C to some other node on the rightmost path R. The method considers each neighbor
x of ¢(u,) in G; and checks whether it is a mapping for some vertex v = ¢~ (x) along
the rightmost path R in C. If the edge (u,,v) does not already exist in C, it is a new
extension, and the extended tuple b = (u,,v, L(u,), L(v), L(u,,v)) is added to the set
of extensions &, along with the graph id i that contributed to that extension.

Forward extensions (lines 16-19) are allowed only from nodes on the rightmost
path R to new nodes. For each node u in R, the algorithm finds a neighbor x in G;
that is not in a mapping from some node in C. For each such node x, the forward
extension f = (u,u, +1,L(¢u)), L(x),L(¢(u),x)) is added to &, along with the graph
id i. Because a forward extension adds a new vertex to the graph G(C), the id of the
new node in C must be u, + 1, that is, one more than the highest numbered node in
C, which by definition is the rightmost child u,.

Once all the backward and forward extensions have been cataloged over all graphs
G; in the database D, we compute their support by counting the number of distinct
graph ids that contribute to each extension. Finally, the method returns the set of
all extensions and their supports in sorted order (increasing) based on the tuple
comparison operator in Eq. (11.1).

Example 11.9. Consider the canonical code C and the corresponding graph G(C)
shown in Figure 11.9a. For this code all the vertices are on the rightmost path, that
is, R={0, 1, 2}, and the rightmost child is u, = 2.

The sets of all possible isomorphisms from C to graphs G; and G» in the database
(shown in Figure 11.7) are listed in Figure 11.9b as ®; and ®». For example, the
first isomorphism ¢ : G(C) — G; is defined as

$1(0) =10 ¢1(1) =30 $1(2) =20
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ALGORITHM 11.2. Rightmost Path Extensions and Their Support

RightMostPath-Extensions (C, D):

1 R < nodes on the rightmost path in C
2 u, < rightmost child in C // dfs number
3 E<« W // set of extensions from C
4 foreach G; eD,i=1,...,n do
5 if C=0 then
// add distinct label tuples in G; as forward
extensions
6 foreach distinct (L(x),L(y),L(x,y)) € G; do
7 L f={0,LL(x), L), L(x, y))
8 Add tuple f to &£ along with graph id i
9 else
10 ®; = Subgraphlsomorphisms(C, G;)
11 foreach isomorphism ¢ € ®; do
// backward extensions from rightmost child
12 foreach x € Ng, (¢ (#,)) such that Jv < ¢~ 1(x) do
13 if veR and (u,,v) € G(C) then
14 L b= (u,, v, L(u,),L(v), L(u,, v))
15 Add tuple b to & along with graph id i
// forward extensions from nodes on rightmost path
16 foreach u € R do
17 foreach x € Ng, (¢ (u)) and Ap~'(x) do
18 L S ={uu, +1,L(g ), Lx), L(p ), x))
19 Add tuple f to £ along with graph id i

// Compute the support of each extension
20 foreach distinct extension s € £ do
21 L sup(s) = number of distinct graph ids that support tuple s

22 return set of pairs (s, sup(s)) for extensions s € £, in tuple sorted order

The list of possible backward and forward extensions for each isomorphism is
shown in Figure 11.9c. For example, there are two possible edge extensions from the
isomorphism ¢;. The first is a backward edge extension (2,0, b,a), as (20,10) is a
valid backward edge in G;. That is, the node x = 10 is a neighbor of ¢(2) =20 in
G1, $71(10) =0 = is on the rightmost path, and the edge (2,0) is not already in
G(C), which satisfy the backward extension steps in lines 12-15 in Algorithm 11.2.
The second extension is a forward one (1, 3,a, b), as (30,40, a, b) is a valid extended
edge in G;. That is, x =40 is a neighbor of ¢ (1) =30 in G;, and node 40 has not
already been mapped to any node in G(C), that is, ¢y 1(40) does not exist. These
conditions satisfy the forward extension steps in lines 16-19 in Algorithm 11.2.



294 Graph Pattern Mining

C
t1:(0,1,a,a) ) ¢ 0 1 2
t2:(1,2,a,b)
é1 ] 10 30 20
G©) @1 | ¢o | 10 30 40
() $s |30 10 20
61| 60 80 70
(a) ®y | ¢ | 80 60 50
b6 | 80 60 70
@ (b) Subgraph isomorphisms
(a) Code C and graph G(C)
Id | ¢ | Extensions
¢ | {(2,0,b,a),(1,3,a,b)} Extension | Support
Gy | 92 | {{1,3,a,b),(0,3,a,b)} (2,0,b,a) 2
¢3 | {(2,0,0,a),(0,3,a,b)} (2,3,b,b) 1
¢4 | {(2,0,b,a),(2,3,b,b),(0,3,a,b)} (1,3,a,b) 2
Go | ¢5 | {(2,3,0,0),(1,3,a,b)} (0,3,a,b) 2
#6 | {(2,0,b,a),(2,3,b,b),(1,3,a,b)} (d) Extensions (sorted) and supports

(c) Edge extensions

Figure 11.9. Rightmost path extensions.

Given the set of all the edge extensions, and the graph ids that contribute
to them, we obtain support for each extension by counting how many graphs
contribute to it. The final set of extensions, in sorted order, along with their support
values is shown in Figure 11.9d. With minsup = 2, the only infrequent extension is
(2,3,b,b).

Subgraph Isomorphisms

The key step in listing the edge extensions for a given code C is to enumerate
all the possible isomorphisms from C to each graph G; € D. The function
SubgraphIsomorphisms, shown in Algorithm 11.3, accepts a code C and a graph
G, and returns the set of all isomorphisms between C and G. The set of
isomorphisms @ is initialized by mapping vertex 0 in C to each vertex x in G
that shares the same label as 0, that is, if L(x) = L(0) (line 1). The method
considers each tuple f; in C and extends the current set of partial isomorphisms.
Let t; = (u,v,L(u),L(v),L(u,v)). We have to check if each isomorphism ¢ € &
can be extended in G wusing the information from # (lines 5-12). If # is a
forward edge, then we seek a neighbor x of ¢(u) in G such that x has not
already been mapped to some vertex in C, that is, ¢!(x) should not exist, and
the node and edge labels should match, that is, L(x) = L(v), and L(¢u),x) =
L(u,v). If so, ¢ can be extended with the mapping ¢(v) — x. The new extended
isomorphism, denoted ¢’, is added to the initially empty set of isomorphisms
@', If 1 is a backward edge, we have to check if ¢(v) is a neighbor of
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ALGORITHM 11.3. Enumerate Subgraph Isomorphisms

SubgraphlIsomorphisms (C = {f1,#a,...,4}, G):

1 &<« {p(0)—> x|xeG and L(x) =L(0)}
2 foreach t;, € C,i=1,...,k do
3 (u,v,L(u),L(v),L(u,v)) < t; // expand extended edge t;
4 @' « () // partial isomorphisms including ¢
5 foreach partial isomorphism ¢ € ® do
6 if v > u then
// forward edge
7 foreach x € Ng(¢(u)) do
8 if A¢~'(x) and L(x) =L(v) and L(¢(x),x) = L(u, v) then
9 V/eqsuw(v)ax}
10 Add ¢’ to @’
11 else
// backward edge
12 if p(v) € Ng; (¢ () then Add ¢ to &' // valid isomorphism
13 ® <« @’ // update partial isomorphisms
14 return @

¢u) in G. If so, we add the current isomorphism ¢ to @’. Thus, only those
isomorphisms that can be extended in the forward case, or those that satisfy the
backward edge, are retained for further checking. Once all the extended edges
in C have been processed, the set ® contains all the valid isomorphisms from
C to G.

Example 11.10. Figure 11.10 illustrates the subgraph isomorphism enumeration
algorithm from the code C to each of the graphs G; and Gs in the database shown
in Figure 11.7.

For Gq, the set of isomorphisms @ is initialized by mapping the first node of C to
all nodes labeled a in Gy because L(0) =a. Thus, ® = {¢1(0) — 10, ¢2(0) — 30}. We
next consider each tuple in C, and see which isomorphisms can be extended. The first
tuple t; = (0, 1, a, a) is a forward edge, thus for ¢, we consider neighbors x of 10 that
are labeled a and not included in the isomorphism yet. The only other vertex that
satisfies this condition is 30; thus the isomorphism is extended by mapping ¢ (1) —
30. In a similar manner the second isomorphism ¢- is extended by adding ¢2(1) — 10,
as shown in Figure 11.10. For the second tuple t; = (1,2,a,b), the isomorphism
¢1 has two possible extensions, as 30 has two neighbors labeled b, namely 20
and 40. The extended mappings are denoted ¢; and ¢7. For ¢, there is only one
extension.

The isomorphisms of C in Gy can be found in a similar manner. The complete
sets of isomorphisms in each database graph are shown in Figure 11.10.
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C
t1:(0,1,a,a) Add 1
f2: (1’ 2’ 4, b) Initial ® Add 11 id ¢ O, 1’ 2
G(O) id |¢]oO0 id|¢ ] 01 ' 1 10,30,20
@ #1 | 10 $1 10,30 | Gy | ¢} |10,30,40
G1 Gl
$2 | 30 $2 | 30,10 é2 | 30,10,20
o | #3160 | o |¢s]60.80 #3 | 60,80,70
@ 2 44|80 21 ¢y | 80,60 | Go| ¢, |80,60,50
7 | 80,60,70

Figure 11.10. Subgraph isomorphisms.

11.3.2 Canonicality Checking

Given a DFS code C = {f1,to,...,4} comprising k extended edge tuples and the
corresponding graph G(C), the task is to check whether the code C is canonical.
This can be accomplished by trying to reconstruct the canonical code C* for
G(C) in an iterative manner starting from the empty code and selecting the least
rightmost path extension at each step, where the least edge extension is based on
the extended tuple comparison operator in Eq.(11.1). If at any step the current
(partial) canonical DFS code C* is smaller than C, then we know that C cannot be
canonical and can thus be pruned. On the other hand, if no smaller code is found after
k extensions then C must be canonical. The pseudo-code for canonicality checking
is given in Algorithm 11.4. The method can be considered as a restricted version
of gSpan in that the graph G(C) plays the role of a graph in the database, and
C* plays the role of a candidate extension. The key difference is that we consider
only the smallest rightmost path edge extension among all the possible candidate
extensions.

ALGORITHM 11.4. Canonicality Checking: Algorithm IsCanonical

IsCanonical (C):

1 Do < {G(C)} // graph corresponding to code C

2 C*« @ // initialize canonical DFScode

3 fori=1---k do

4 & = RightMostPath-Extensions(C*, D¢) // extensions of C*

5 (s;,sup(s;)) < min{E} // least rightmost edge extension of C*
6 if s; <t; then

7 L return false // C* is smaller, thus C is not canonical

C* <—C*Us,-

o)

9 return true // no smaller code exists; C is canonical
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G Step 1 Step 2 Step 3

@ : :
(@) (@)

@ :
@ (@) (@
© | e ® ©

C
* Ccr
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Figure 11.11. Canonicality checking.

Example 11.11. Consider the subgraph candidate Ci4 from Figure 11.8, which is
replicated as graph G in Figure 11.11, along with its DFS code C. From an initial
canonical code C* =, the smallest rightmost edge extension s; is added in Step 1.
Because 51 =, we proceed to the next step, which finds the smallest edge extension
s2. Once again sy = 5, so we proceed to the third step. The least possible edge
extension for G* is the extended edge s3. However, we find that s3 < 3, which means
that C cannot be canonical, and there is no need to try further edge extensions.

11.4 FURTHER READING

The gSpan algorithm was described in Yan and Han (2002), along with the notion of
canonical DFS code. A different notion of canonical graphs using canonical adjacency
matrices was described in Huan, Wang, and Prins (2003). Level-wise algorithms to
mine frequent subgraphs appear in Kuramochi and Karypis (2001) and Inokuchi,
Washio, and Motoda (2000). Markov chain Monte Carlo methods to sample a set
of representative graph patterns were proposed in Al Hasan and Zaki (2009). For an
efficient algorithm to mine frequent tree patterns see Zaki (2002).

Al Hasan, M. and Zaki, M. J. (2009). “Output space sampling for graph patterns.”
Proceedings of the VLDB Endowment, 2 (1): 730-741.

Huan, J., Wang, W., and Prins, J. (2003). “Efficient mining of frequent subgraphs
in the presence of isomorphism.” In Proceedings of the TEEE International
Conference on Data Mining. IEEE, pp. 549-552.

Inokuchi, A., Washio, T., and Motoda, H. “An apriori-based algorithm for mining
frequent substructures from graph data.” In Proceedings of the European
Conference on Principles of Data Mining and Knowledge Discovery. Springer,
pp. 13-23.
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Kuramochi, M. and Karypis, G. (2001). “Frequent subgraph discovery.” In Proceedings
of the IEEE International Conference on Data Mining. IEEE, pp. 313-320.

Yan, X. and Han, J. (2002). “gSpan: Graph-based substructure pattern mining.”
In Proceedings of the IEEE International Conference on Data Mining. IEEE,
pp. 721-724.

Zaki, M. J. (2002). “Efficiently mining frequent trees in a forest.” In Proceedings of
the 8th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, pp. 71-80.

11.5 EXERCISES

Q1. Find the canonical DFS code for the graph in Figure 11.12. Try to eliminate some codes
without generating the complete search tree. For example, you can eliminate a code if
you can show that it will have a larger code than some other code.

Figure 11.12. Graph for Q1.

Q2. Given the graph in Figure 11.13. Mine all the frequent subgraphs with minsup = 1. For
each frequent subgraph, also show its canonical code.

Figure 11.13. Graph for Q2.
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Q3. Consider the graph shown in Figure 11.14. Show all its isomorphic graphs and their
DFS codes, and find the canonical representative (you may omit isomorphic graphs

that can definitely not have canonical codes).

Figure 11.14. Graph for Q3.

Q4. Given the graphs in Figure 11.15, separate them into isomorphic groups.

G G @
@ @ 0
0 oG 0‘ ® W
O ©

Figure 11.15. Data for Q4.

&
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Q5. Given the graph in Figure 11.16. Find the maximum DFS code for the graph, subject
to the constraint that all extensions (whether forward or backward) are done only from
the right most path.

a

Figure 11.16. Graph for Q5.

Q6. For an edge labeled undirected graph G = (V, E), define its labeled adjacency matrix
A as follows:

L(v)  ifi=j
A, j) =1L, vj) if (vj,v)) €E
0 Otherwise

where L(v;) is the label for vertex v; and L(v;, vj) is the label for edge (v;, v;). In other
words, the labeled adjacency matrix has the node labels on the main diagonal, and it
has the label of the edge (v;,v;) in cell A(i, j). Finally, a 0 in cell A(i, j) means that
there is no edge between v; and v;.

U3 V4 Us

Figure 11.17. Graph for Q6.

Given a particular permutation of the vertices, a matrix code for the graph is obtained
by concatenating the lower triangular submatrix of A row-by-row. For example, one
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possible matrix corresponding to the default vertex permutation vgv;vov3zv4vs for the
graph in Figure 11.17 is given as

a
X b

0 y b

0 y y b

0 0 y y b

0 0 0 0 z a

The code for the matrix above is axb0yb0yyb00yyb0000za. Given the total ordering
on the labels
O<a<b<x<y<z

find the maximum matrix code for the graph in Figure 11.17. That is, among all
possible vertex permutations and the corresponding matrix codes, you have to choose
the lexicographically largest code.



Pattern and Rule Assessment

In this chapter we discuss how to assess the significance of the mined frequent patterns,
as well as the association rules derived from them. Ideally, the mined patterns and
rules should satisfy desirable properties such as conciseness, novelty, utility, and so on.
We outline several rule and pattern assessment measures that aim to quantify different
properties of the mined results. Typically, the question of whether a pattern or rule
is interesting is to a large extent a subjective one. However, we can certainly try to
eliminate rules and patterns that are not statistically significant. Methods to test for
the statistical significance and to obtain confidence bounds on the test statistic value
are also considered in this chapter.

12.1 RULE AND PATTERN ASSESSMENT MEASURES

Let Z be a set of items and T a set of tids, and let D €7 x Z be a binary database.

Recall that an association rule is an expression X — Y, where X and Y are itemsets,

ie, X, YCZ and XNY =@. We call X the antecedent of the rule and Y the consequent.
The tidset for an itemset X is the set of all tids that contain X, given as

£(X) = {t € 7| X is contained in t}

The support of X is thus sup(X) = [t(X)|. In the discussion that follows we use the
short form XY to denote the union, XUY, of the itemsets X and Y.

Given a frequent itemset Z € F, where F is the set of all frequent itemsets, we
can derive different association rules by considering each proper subset of Z as the
antecedent and the remaining items as the consequent, that is, for each Z € F, we can
derive a set of rules of the form X — Y, where XCZ and Y =7\ X.

12.1.1 Rule Assessment Measures

Different rule interestingness measures try to quantify the dependence between the
consequent and antecedent. Below we review some of the common rule assessment
measures, starting with support and confidence.

302
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Table 12.1. Example Dataset

Tid Items
ABDE
BCE
ABDE
ABCE
ABCDE
BCD

DO WD+~

Table 12.2. Frequent itemsets with minsup =3 (relative minimum support

50%)
sup rsup Itemsets
3 0.5 ABD, ABDE, AD, ADE, BCE, BDE, CE, DE
4 0.67 A, C, D, AB, ABE, AE, BC, BD
5 0.83 E, BE
6 1.0 B
Support

The support of the rule is defined as the number of transactions that contain both X
and Y, that is,

sup(X —> Y) = sup(XY) = |[t(XY)| (12.1)

The relative support is the fraction of transactions that contain both X and Y, that
is, the empirical joint probability of the items comprising the rule

sup(XY
rsup(X — Y) = P(XY) =rsup(XY) = I;(T|)

Typically we are interested in frequent rules, with sup(X — Y) > minsup, where
minsup is a user-specified minimum support threshold. When minimum support is
specified as a fraction then relative support is implied. Notice that (relative) support
is a symmetric measure because sup(X — Y) = sup(Y — X).

Example 12.1. We illustrate the rule assessment measures using the example binary
dataset D in Table 12.1, shown in transactional form. It has six transactions over a
set of five items Z = {A, B, C, D, E}. The set of all frequent itemsets with minsup = 3
is listed in Table 12.2. The table shows the support and relative support for
each frequent itemset. The association rule AB — DE derived from the itemset
ABDE has support sup(AB — DE) = sup(ABDE) = 3, and its relative support is
rsup(AB — DE) = sup(ABDE)/|D| =3/6 = 0.5.
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Table 12.3. Rule confidence

Rule conf
1.00
0.80

0.83
1.00

| H|| > H

== @] =] >

IO

BC 0.60
E 0.75

BC

Confidence
The confidence of a rule is the conditional probability that a transaction contains the
consequent Y given that it contains the antecedent X:

P(XY) rsup(XY) sup(XY)

conf(X —Y) = P(Y[X) = P(X)  msup(X)  sup(X)

Typically we are interested in high confidence rules, with conf(X — Y) > minconf,
where minconf is a user-specified minimum confidence value. Confidence is not a
symmetric measure because by definition it is conditional on the antecedent.

Example 12.2. Table 12.3 shows some example association rules along with their
confidence generated from the example dataset in Table 12.1. For instance, the
rule A — E has confidence sup(AE)/sup(A) = 4/4 = 1.0. To see the asymmetry
of confidence, observe that the rule E —> A has confidence sup(AE)/sup(E) =
4/5=0.8.

Care must be exercised in interpreting the goodness of a rule. For instance, the
rule E — BC has confidence P(BC|E) =0.60, that is, given E we have a probability
of 60% of finding BC. However, the unconditional probability of BC is P(BC) =4/6 =
0.67, which means that E, in fact, has a deleterious effect on BC.

Lift
Lift is defined as the ratio of the observed joint probability of X and Y to the expected
joint probability if they were statistically independent, that is,

PXY) rsup(XY) _conf(X—Y)
PX)-PY) rsup(X)-rsup(Y)  rsup(Y)
One common use of lift is to measure the surprise of a rule. A lift value close to 1 means
that the support of a rule is expected considering the supports of its components. We
usually look for values that are much larger (i.e., above expectation) or smaller than

1 (i.e., below expectation).
Notice that lift is a symmetric measure, and it is always larger than or equal to

lift(X —> Y) =

the confidence because it is the confidence divided by the consequent’s probability.
Lift is also not downward closed, that is, assuming that X’ C X and Y’ C Y, it can
happen that lift(X’ — Y’) may be higher than lift(X — Y). Lift can be susceptible
to noise in small datasets, as rare or infrequent itemsets that occur only a few times
can have very high lift values.
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Table 12.4. Rule lift
Rule lift
AE — BC 0.75
CE — AB 1.00
BE — AC 1.20

Example 12.3. Table 12.4 shows three rules and their lift values, derived from the
itemset ABCE, which has support sup(ABCE) = 2 in our example database in
Table 12.1.

The lift for the rule AE — BC is given as

rsup(ABCE) . 2/6
rsup(AE) - rsup(BC)  4/6 x 4/6

lift(AE — BC) = =6/8=0.75
Since the lift value is less than 1, the observed rule support is less than the expected
support. On the other hand, the rule BE — AC has lift

2/6

lift(BE — AC) = —~—
2/6 x 5/6

=6/5=1.2

indicating that it occurs more than expected. Finally, the rule CE — AB has lift
equal to 1.0, which means that the observed support and the expected support
match.

Example 12.4. It is interesting to compare confidence and lift. Consider the three
rules shown in Table 12.5 as well as their relative support, confidence, and lift values.
Comparing the first two rules, we can see that despite having lift greater than 1,
they provide different information. Whereas E —> AC is a weak rule (conf = 0.4),
E — AB is not only stronger in terms of confidence, but it also has more support.
Comparing the second and third rules, we can see that although B — E has lift
equal to 1.0, meaning that B and E are independent events, its confidence is higher
and so is its support. This example underscores the point that whenever we analyze
association rules, we should evaluate them using multiple interestingness measures.

Leverage
Leverage measures the difference between the observed and expected joint probability
of XY assuming that X and Y are independent

leverage(X — Y) = P(XY) — P(X) - P(Y) = rsup(XY) — rsup(X) - rsup(Y)

Leverage gives an “absolute” measure of how surprising a rule is and it should be used
together with lift. Like lift it is symmetric.

Example 12.5. Consider the rules shown in Table 12.6, which are based on the
example dataset in Table 12.1. The leverage of the rule ACD — E is

leverage(ACD —> E) = P(ACDE) — P(ACD) - P(E) = 1/6 — 1/6 x 5/6 = 0.03
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Table 12.5. Comparing support, confidence, and lift

Rule rsup conf lift
— AC 0.33 0.40 1.20
E — AB 0.67 0.80 1.20
B — E 0.83 0.83 1.00

=

Table 12.6. Rule leverage

Rule rsup lift leverage

ACD — E 0.17 1.20 0.03
AC — E 0.33 1.20 0.06
AB — D 0.50 1.12 0.06
A — E 0.67 1.20 0.11

Similarly, we can calculate the leverage for other rules. The first two rules have
the same lift; however, the leverage of the first rule is half that of the second rule,
mainly due to the higher support of ACE. Thus, considering lift in isolation may be
misleading because rules with different support may have the same lift. On the other
hand, the second and third rules have different lift but the same leverage. Finally, we
emphasize the need to consider leverage together with other metrics by comparing
the first, second, and fourth rules, which, despite having the same lift, have different
leverage values. In fact, the fourth rule A — E may be preferable over the first two
because it is simpler and has higher leverage.

Jaccard
The Jaccard coefficient measures the similarity between two sets. When applied as a
rule assessment measure it computes the similarity between the tidsets of X and Y:

[t(X) Nt(Y)]
[6(X) Ut(Y)]
sup(XY)
- sup(X) +sup(Y) —sup(XY)
P(XY)
T PX)+ P(Y) - P(XY)

jaccard X —Y) =

Jaccard is a symmetric measure.

Example 12.6. Consider the three rules and their Jaccard values shown in Table 12.7.
For example, we have

sup(AC) . 2
sup(A) +sup(C) —sup(AC)  4+4—2

jaccard(A — C) = =2/6=0.33
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Table 12.7. Jaccard coefficient

Rule rsup lift jaccard
A —> C 0.33 0.75 0.33
A — E 0.67 1.20 0.80
A — B 0.67 1.00 0.67

Conviction
All of the rule assessment measures we considered above use only the joint probability
of X and Y. Define =X to be the event that X is not contained in a transaction,
that is, X € t € T, and likewise for =Y. There are, in general, four possible events
depending on the occurrence or non-occurrence of the itemsets X and Y as depicted
in the contingency table shown in Table 12.8.

Conviction measures the expected error of the rule, that is, how often X occurs
in a transaction where Y does not. It is thus a measure of the strength of a rule with
respect to the complement of the consequent, defined as

PX)-P(=Y) 1
PX-Y)  lift(X — =Y)

convX—Y) =

If the joint probability of X—Y is less than that expected under independence of X
and —Y, then conviction is high, and vice versa. It is an asymmetric measure.

From Table 12.8 we observe that P(X) = P(XY) + P(X—Y), which implies that
P(X—Y)=P(X)— P(XY). Further, P(—Y) =1— P(Y). We thus have

P(X)-P(=Y) P(=Y) _ 1—rsup(Y)
PX)—P(XY) 1-PXY)/P(X) 1—conf(X—Y)

convX—Y) =

We conclude that conviction is infinite if confidence is one. If X and Y are independent,
then conviction is 1.

Example 12.7. For the rule A — DE, we have

1-— DE
conv(A — DE) = rsup(DE) _

————— =20
1 —conf(A)

Table 12.9 shows this and some other rules, along with their conviction, support,
confidence, and lift values.

Odds Ratio

The odds ratio utilizes all four entries from the contingency table shown in Table 12.8.
Let us divide the dataset into two groups of transactions — those that contain X and
those that do not contain X. Define the odds of Y in these two groups as follows:

PXY)/P(X)  PXY)
PX=Y)/PX)  PX=Y)

P(=XY)/P(-=X)  P(-XY)
P(—X—Y)/P(=X) _ P(=X—Y)

odds(Y|X) =

0dds(Y|—X) =
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Table 12.8. Contingency table for X and Y

Y =Y
X sup(XY) sup(X—Y) sup(X)
-X sup(—XY) sup(—X—Y) sup(—X)
| | sup(Y) sup-Y) || m ]

Table 12.9. Rule conviction

Rule rsup conf lift conv

A — DE 0.50 0.75 1.50 2.00
DE — A 0.50 1.00 1.50 00
E — C 0.50 0.60 0.90 0.83
C — E 0.50 0.75 0.90 0.68

The odds ratio is then defined as the ratio of these two odds:

odds(Y|X)  P(XY):P(=X=Y)
odds(Y|-X)  P(X=Y)-P(—XY)
_sup(XY) - sup(=X—Y)
~ sup(X=Y) - sup(=XY)

oddsratio(X — Y) =

The odds ratio is a symmetric measure, and if X and Y are independent, then it has
value 1. Thus, values close to 1 may indicate that there is little dependence between
X and Y. Odds ratios greater than 1 imply higher odds of Y occurring in the presence
of X as opposed to its complement =X, whereas odds smaller than one imply higher
odds of Y occurring with —X.

Example 12.8. Let us compare the odds ratio for two rules, C — A and D — A,
using the example data in Table 12.1. The contingency tables for A and C, and for
A and D, are given below:

C|—-C D|-D
A 2| 2 A 3] 1
—A[2] 0 -A |1 1

The odds ratio values for the two rules are given as

sup(AC) -sup(—=A—=C) 2x0
sup(A—C) -sup(—AC)  2x2
sup(AD) -sup(=A=-D) 3x1
sup(A—D) -sup(—AD) 1x1

oddsratio(C— A) =

oddsratio(D — A) =

Thus, D — A is a stronger rule than C — A, which is also indicated by looking
at other measures like lift and confidence:

conf(C—> A)=2/4=0.5 conf(D — A)=3/4=0.75
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2
B _075 1D —> A) = —10

=1.125

C — A has less confidence and lift than D — A.

Example 12.9. We apply the different rule assessment measures on the Iris dataset,
which has n =150 examples, over one categorical attribute (class), and four numeric
attributes (sepal length, sepal width, petal length, and petal width). To
generate association rules we first discretize the numeric attributes as shown in
Table 12.10. In particular, we want to determine representative class-specific rules
that characterize each of the three Iris classes: iris setosa, iris virginica and
iris versicolor, that is, we generate rules of the form X — y, where X is an
itemset over the discretized numeric attributes, and y is a single item representing
one of the Iris classes.

We start by generating all class-specific association rules using minsup = 10
and a minimum lift value of 0.1, which results in a total of 79 rules. Figure 12.1a
plots the relative support and confidence of these 79 rules, with the three classes
represented by different symbols. To look for the most surprising rules, we also plot
in Figure 12.1b the lift and conviction value for the same 79 rules. For each class we
select the most specific (i.e., with maximal antecedent) rule with the highest relative
support and then confidence, and also those with the highest conviction and then
lift. The selected rules are listed in Table 12.11 and Table 12.12, respectively. They
are also highlighted in Figure 12.1 (as larger white symbols). Compared to the top
rules for support and confidence, we observe that the best rule for ¢; is the same,
but the rules for ¢3 and c3 are not the same, suggesting a trade-off between support
and novelty among these rules.

Table 12.10. Iris dataset discretization and labels employed

Attribute Range or value Label
4.30-5.55 sly
Sepal length 5.55-6.15 sl
6.15-7.90 sl
2.00-2.95 swy
Sepal width 2.95-3.35 SWa
3.35-4.40 Sws
1.00-2.45 pl
Petal length 2.45-4.75 pla
4.75-6.90 pls
0.10-0.80 pwi
Petal width 0-80-L.75 bt
1.75-2.50 pws
Iris-setosa c1
Class Iris-versicolor Co
Iris-virginica c3
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(a) Support vs. confidence (b) Lift vs. conviction

Figure 12.1. Iris: support vs. confidence, and conviction vs. lift for class-specific rules. The best rule
for each class is shown in white.

Table 12.11. Iris: best class-specific rules according to support and confidence

conv

Rule ‘ rsup ‘ conf ‘ lift

{pli, pw1} — 1 0.333 1.00 3.00 33.33
pwy —> C2 0.327 0.91 2.72 6.00
pls — c3 0.327 0.89 2.67 5.24

Table 12.12. Iris: best class-specific rules according to lift and conviction

Rule ‘ rsup conf | lift | conv |
{pli, pw1} — 1 0.33 1.00 3.00 33.33
{pl2, pwa} — c2 0.29 0.98 2.93 15.00
{sl3, pl3, pws} —> c3 0.25 1.00 3.00 24.67

12.1.2 Pattern Assessment Measures

We now turn our focus on measures for pattern assessment.

Support
The most basic measures are support and relative support, giving the number and
fraction of transactions in D that contain the itemset X:

sup(X)
D]

sup(X) = [t(X)] rsup(X) =
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;l}ite lift of a k-itemset X = {x1, x2,...,x;} in dataset D is defined as
PX)  rsup(X)

[To PG TTiyrsup(o)

that is, the ratio of the observed joint probability of items in X to the expected joint

probability if all the items x; € X were independent.
We may further generalize the notion of lift of an itemset X by considering all

lift(X, D) = (12.2)

the different ways of partitioning it into nonempty and disjoint subsets. For instance,
assume that the set {X, Xy, ...,X,} is a g-partition of X, i.e., a partitioning of X into
g nonempty and disjoint itemsets X;, such that X; NX; =@ and U;X; = X. Define the
generalized lift of X over partitions of size ¢ as follows:

P
ity ()= oin { ., PO }

This is, the least value of lift over all g-partitions X. Viewed in this light, lift(X) =
lift; (X), that is, lift is the value obtained from the unique k-partition of X.

Rule-based Measures

Given an itemset X, we can evaluate it using rule assessment measures by considering
all possible rules that can be generated from X. Let ® be some rule assessment
measure. We generate all possible rules from X of the form X; — X5 and Xy — Xj,
where the set {X;,Xs} is a 2-partition, or a bipartition, of X. We then compute
the measure © for each such rule, and use summary statistics such as the mean,
maximum, and minimum to characterize X. If ® is a symmetric measure, then
OX; — X3) =0(Xy; — Xj), and we have to consider only half of the rules. For
example, if ® is rule lift, then we can define the average, maximum, and minimum
lift values for X as follows:

AveLift(X) = avg {lift(X1 — Xg)]
X1.X2

MaxLift(X) = }Erlla)u(xz {hft Xy — Xg)]

MinLift(X) = min {lift(X1 s XQ)}
X1.X2
We can also do the same for other rule measures such as leverage, confidence, and so

on. In particular, when we use rule lift, then MinLift(X) is identical to the generalized
lift lifto(X) over all 2-partitions of X.

Example 12.10. Consider the itemset X = {pls, pws,c2}, whose support in the
discretized Iris dataset is shown in Table 12.13, along with the supports for all
of its subsets. Note that the size of the database is |D| =n = 150.

Using Eq. (12.2), the lift of X is given as

rsup(X) 0.293

= =8.16
rsup(pls) - rsup(pws) - rsup(ce)  0.3-0.36-0.333

lift(X) =
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Table 12.13. Support values for {pl2, pwa,ca} and its subsets

Itemset sup rsup

{pl2, pwa, c2} 44 0.293
{pl2, pwa} 45 0.300
{pl2, c2} 44 0.293
{pwa, ca} 49 0.327
{pl2} 45 0.300
{pwa} 54 0.360
{ca} 50 0.333

Table 12.14. Rules generated from itemset {pls, pwa,c2}

| Bipartition | Rule | lift leverage conf
plo —> {pwa, c2} 2.993 0.195 0.978

[{p). (pw2. et}
{pwa, ca} —> pla 2.993 0.195 0.898
pwa —> {pla, c2} 2.778 0.188 0.815

{{sz}, {Plz,cz}}
{pl2, c2} — pws 2.778 0.188 1.000
co —> {pla, pwa} 2.933 0.193 0.880

{tea). (pla, pua})
{pla, pwa} —> c2 2.933 0.193 0.978

Table 12.14 shows all the possible rules that can be generated from X, along
with the rule lift and leverage values. Note that because both of these measures
are symmetric, we need to consider only the distinct bipartitions of which there are
three, as shown in the table. The maximum, minimum, and average lift values are
as follows:

MaxLift(X) = max{2.993, 2.778, 2.933} = 2.998
MinLift(X) = min{2.993, 2.778, 2.933} = 2.778
AvgLift(X) = avg{2.993,2.778, 2.933} = 2.901

We may use other measures too. For example, the average leverage of X is given as
AvgLeverage(X) = avg{0.195,0.188,0.193} = 0.192

However, because confidence is not a symmetric measure, we have to consider all
the six rules and their confidence values, as shown in Table 12.14. The average
confidence for X is

AvgConf(X) = avg{0.978,0.898,0.815,1.0,0.88,0.978} = 5.549/6 = 0.925

Example 12.11. Consider all frequent itemsets in the discretized Iris dataset from
Example 12.9, using minsup = 1. We analyze the set of all possible rules that can
be generated from these frequent itemsets. Figure 12.2 plots the relative support
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Figure 12.2. Iris: support and average lift of patterns assessed.

and average lift values for all the 306 frequent patterns with size at least 2 (since
nontrivial rules can only be generated from itemsets of size 2 or more). We can see
that with the exception of low support itemsets, the average lift value is bounded
above by 3.0. From among these we may select those patterns with the highest
support for further analysis. For instance, the itemset X = {pl1, pw1, c1} is a maximal
itemset with support rsup(X) = 0.33, all of whose subsets also have support rsup =
0.33. Thus, all of the rules that can be derived from it have a lift of 3.0, and the
minimum lift of X is 3.0.

12.1.3 Comparing Multiple Rules and Patterns

We now turn our attention to comparing different rules and patterns. In general, the
number of frequent itemsets and association rules can be very large and many of them
may not be very relevant. We highlight cases when certain patterns and rules can
be pruned, as the information contained in them may be subsumed by other more
relevant ones.

Comparing Itemsets

When comparing multiple itemsets we may choose to focus on the maximal itemsets
that satisfy some property, or we may consider closed itemsets that capture all of
the support information. We consider these and other measures in the following
paragraphs.
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Table 12.15. Iris: maximal patterns according to average lift

Pattern Avg. lift
{sl1,swa, pli, pwi,c1}) 2.90
{sl1,sws, pli, pwi,c1}) 2.86
{sl2, sw1, pla, pwa, ca} 2.83
{sl3,s5w3, pl3, pws, c3} 2.88
{sw1, pl3, pws, c3} 2.52

Maximal Itemsets An frequent itemset X is maximal if all of its supersets are not
frequent, that is, X is maximal iff

sup(X) > minsup, and for all Y D X, sup(Y) < minsup

Given a collection of frequent itemsets, we may choose to retain only the maximal
ones, especially among those that already satisfy some other constraints on pattern
assessment measures like lift or leverage.

Example 12.12. Consider the discretized Iris dataset from Example 12.9. To gain
insights into the maximal itemsets that pertain to each of the Iris classes, we focus our
attention on the class-specific itemsets, that is, those itemsets X that contain a class
as one of the items. From the itemsets plotted in Figure 12.2, using minsup(X) > 15
(which corresponds to a relative support of 10%) and retaining only those itemsets
with an average lift value of at least 2.5, we retain 37 class-specific itemsets. Among
these, the maximal class-specific itemsets are shown in Table 12.15, which highlight
the features that characterize each of the three classes. For instance, for class c;
(Iris-setosa), the essential items are sy, pli, pw; and either sws or sws. Looking at
the range values in Table 12.10, we conclude that Iris-setosa class is characterized
by sepal-length in the range sl; = [4.30,5.55], petal-length in the range pl; =
[1,2.45], and so on. A similar interpretation can be carried out for the other two Iris
classes.

Closed Itemsets and Minimal Generators An itemset X is closed if all of its supersets
have strictly less support, that is,

sup(X) > sup(Y), for all Y DX

An itemset X is a minimal generator if all its subsets have strictly higher support,
that is,

sup(X) < sup(Y), forall Y c X

If an itemset X is not a minimal generator, then it implies that it has some redundant
items, that is, we can find some subset Y C X, which can be replaced with an even
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Table 12.16. Closed itemsets and minimal generators

sup Closed Itemset Minimal Generators

3 ABDE AD, DE

3 BCE CE

4 ABE A

4 BC C

4 BD D

5 BE E

6 B B

smaller subset W C Y without changing the support of X, that is, there existsa W CY,
such that
sup(X) =sup(Y U (X\Y)) =sup(WU (X\Y))

One can show that all subsets of a minimal generator must themselves be minimal
generators.

Example 12.13. Consider the dataset in Table 12.1 and the set of frequent itemsets
with minsup = 3 as shown in Table 12.2. There are only two maximal frequent
itemsets, namely ABDE and BCE, which capture essential information about
whether another itemset is frequent or not: an itemset is frequent only if it is a
subset of one of these two.

Table 12.16 shows the seven closed itemsets and the corresponding minimal
generators. Both of these sets allow one to infer the exact support of any other
frequent itemset. The support of an itemset X is the maximum support among
all closed itemsets that contain it. Alternatively, the support of X is the minimum
support among all minimal generators that are subsets of X. For example, the itemset
AE is a subset of the closed sets ABE and ABDE, and it is a superset of the minimal
generators A, and E; we can observe that

sup(AE) = max{sup(ABE), sup(ABDE)} =4

sup(AE) = min{sup(A),sup(E)} =4

Productive Itemsets An itemset X is productive if its relative support is higher
than the expected relative support over all of its bipartitions, assuming they are
independent. More formally, let |X| > 2, and let {X;, X5} be a bipartition of X. We say
that X is productive provided

rsup(X) > rsup(X;) x rsup(Xs), for all bipartitions {X;, X5} of X (12.3)

This immediately implies that X is productive if its minimum lift is greater than
one, as

MinLift(X) = Xmi}r(l
1,42

{ rsup(X) } o1
rsup(Xy) - rsup(Xa)
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In terms of leverage, X is productive if its minimum leverage is above zero because

MinLeverage(X) = Xmi)? {rsup(X) —rsup(Xy) x rsup(Xg)] >0
1,42
Example 12.14. Considering the frequent itemsets in Table 12.2, the set ABDE is

not productive becaus